Content deleted Content added
m Open access bot: url-access updated in citation with #oabot. |
|||
(182 intermediate revisions by 17 users not shown) | |||
Line 1:
{{Short description|Type of regression analysis}}
'''Functional regression''' is
▲'''Functional regression''' is an extension of the [[Regression analysis|traditional multivariate regression]] with scalar [[Dependent and independent variables|responses]] and scalar [[Dependent and independent variables|covariates]], which allows one to conduct regression analysis on [[Functional data analysis|functional data]]. One the one hand, functional regression models can be classified into three types based on whether the responses or covariates are functional or scalar: (i) scalar responses with functional covariates, (ii) functional responses with scalar covariates, (iii) functional responses with functional covariates, and (iv) scalar or functional responses with functional and scalar covariates. On the other hand, functional regression models can be [[Linear regression|linear]], partially linear, or [[Nonlinear regression|nonlinear]]. In particular, functional polynomial models, functional [[Semiparametric_regression#Index_models|single and multiple single models]] and functional [[Additive model|additive models]] are three special cases of functional nonlinear models.
__TOC__
== Functional linear models (FLMs) ==
Functional linear models (FLMs) are an extension of [[Linear regression|
{{NumBlk|::|<math display="block">Y = \beta_0 + \langle
where <math>\langle\cdot,\cdot\rangle</math> denotes the [[Inner product space|inner product]] in [[
=== Functional linear models with scalar
Functional linear models with scalar
where
For implementation, regularization is needed and can be done through truncation, <math>L^2</math> penalization or <math>L^1</math> penalization.<ref name=morr:15>{{cite journal|doi=10.1146/annurev-statistics-010814-020413|title=Functional Regression|year=2015|last1=Morris|first1=Jeffrey S.|journal=[[Annual Review of Statistics and Its Application]]|volume=2|issue=1|pages=321–359|arxiv=1406.4068|bibcode=2015AnRSA...2..321M|s2cid=18637009}}</ref> In addition, a [[reproducing kernel Hilbert space]] (RKHS) approach can also be used to estimate <math>\beta_0</math> and <math>\beta(\cdot)</math> in model ({{EquationNote|2}})<ref>Yuan and Cai (2010). "A reproducing kernel Hilbert space approach to functional linear regression". ''The Annals of Statistics''. '''38''' (6):3412–3444. [[Digital object identifier|doi]]:[http://doi.org/10.1214/09-AOS772 10.1214/09-AOS772].</ref>
Adding multiple functional and scalar covariates, the FLR can be extended as▼
$$Y = \langle\mathbf{Z},\alpha\rangle + \sum_{j=1}^p \int_{\mathcal{T}_j} X_j^c(t) \beta_j(t) dt + \epsilon$$▼
▲Adding multiple functional and scalar covariates,
=== Functional linear models with functional response ===▼
▲
where <math>Z_1,\ldots,Z_q</math> are scalar covariates with <math>Z_1=1</math>, <math>\alpha_1,\ldots,\alpha_q</math> are regression coefficients for <math>Z_1,\ldots,Z_q</math>, respectively, <math>X^c_j</math> is a centered functional covariate given by <math>X_j^c(\cdot) = X_j(\cdot) - \mathbb{E}(X_j(\cdot))</math>, <math>\beta_j</math> is regression coefficient function for <math>X_j^c(\cdot)</math>, and <math>\mathcal{T}_j</math> is the ___domain of <math>X_j</math> and <math>\beta_j</math>, for <math>j=1,\ldots,p</math>. However, due to the parametric component <math>\alpha</math>, the estimation methods for model ({{EquationNote|2}}) cannot be used in this case<ref name=wang:16>{{cite journal|doi=10.1146/annurev-statistics-041715-033624|title=Functional Data Analysis|year=2016|last1=Wang|first1=Jane-Ling|last2=Chiou|first2=Jeng-Min|last3=Müller|first3=Hans-Georg|journal=[[Annual Review of Statistics and Its Application]]|volume=3|issue=1|pages=257–295|bibcode=2016AnRSA...3..257W|url=https://zenodo.org/record/895750|doi-access=free}}</ref> and alternative estimation methods for model ({{EquationNote|3}}) are available.<ref>{{Cite journal |last=Kong |first=Dehan |last2=Xue |first2=Kaijie |last3=Yao |first3=Fang |last4=Zhang |first4=Hao H. |date= |title=Partially functional linear regression in high dimensions |url=https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asv062 |journal=Biometrika |language=en |volume=103 |issue=1 |pages=147–159 |doi=10.1093/biomet/asv062 |issn=0006-3444|url-access=subscription }}</ref><ref>{{Cite journal |last=Hu |first=Z. |date=2004-06-01 |title=Profile-kernel versus backfitting in the partially linear models for longitudinal/clustered data |url=https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/91.2.251 |journal=Biometrika |language=en |volume=91 |issue=2 |pages=251–262 |doi=10.1093/biomet/91.2.251 |issn=0006-3444|url-access=subscription }}</ref>
where $s\in\mathcal{T}_Y$, $t\in\mathcal{T}_X$, $X^c(\cdot) = X(\cdot) - \mathbb{E}(X(\cdot))$ is still the centered functional covariate, $\beta_0(\cdot)$ and $\beta(\cdot,\cdot)$ are coefficient functions, and $\epsilon(\cdot)$ is usually assumed to be a Gaussian process with mean zero. In this case, at any given time $s\in\mathcal{T}_Y$, the value of $Y$, i.e. $Y(s)$, depends on the entire trajectory of $X$. This model, for any given time $s$, is an extension of the traditional multivariate linear regression model by simply replacing the inner product in Euclidean space by that in $L^2$ space. Thus, estimation of this model can be given by analogy to multivariate linear regression▼
$$r_{XY} = R_{XX}\beta, \text{ for } \beta\in L^2(\mathcal{T}_X\times\mathcal{T}_X)$$▼
which is a FLM with functional response and scalar covariates.▼
For a functional response <math>Y(\cdot)</math> with ___domain <math>\mathcal{T}</math> and a functional covariate <math>X(\cdot)</math> with ___domain <math>\mathcal{S}</math>, two FLMs regressing <math>Y(\cdot)</math> on <math>X(\cdot)</math> have been considered.<ref name=wang:16/><ref>Ramsay and [[Bernard Silverman|Silverman]] (2005). ''Functional data analysis'', 2nd ed., New York: Springer, {{ISBN|0-387-40080-X}}.</ref> One of these two models is of the form
Assuming that $\mathcal{T}_X = \mathcal{T}_Y := \mathcal{T}$, another model called varying-coefficient model is of the form▼
{{NumBlk|::|<math display="block">Y(t) = \beta_0(t) + \int_{\mathcal{S}} \beta(s,t) X^c(s)\,ds + \varepsilon(t),\ \text{for}\ t\in\mathcal{T},</math>|{{EquationRef|4}}}}
▲where
▲
where <math>r_{XY}(s,t) = \text{cov}(X(s),Y(t))</math>, <math>R_{XX}: L^2(\mathcal{S}\times\mathcal{S}) \rightarrow L^2(\mathcal{S}\times\mathcal{T})</math> is defined as <math>(R_{XX}\beta)(s,t) = \int_\mathcal{S} r_{XX}(s,w)\beta(w,t)dw</math> with <math>r_{XX}(s,w) = \text{cov}(X(s),X(w))</math> for <math>s,w\in\mathcal{S}</math>.<ref name=wang:16/> Regularization is needed and can be done through truncation, <math>L^2</math> penalization or <math>L^1</math> penalization.<ref name=morr:15/> Various estimation methods for model ({{EquationNote|4}}) are available.<ref>{{Cite journal |last=Ramsay |first=J. O. |last2=Dalzell |first2=C. J. |date=1991 |title=Some Tools for Functional Data Analysis |url=https://www.jstor.org/stable/2345586 |journal=Journal of the Royal Statistical Society. Series B (Methodological) |volume=53 |issue=3 |pages=539–572 |issn=0035-9246}}</ref><ref>{{Cite journal |last=Yao |first=Fang |last2=Müller |first2=Hans-Georg |last3=Wang |first3=Jane-Ling |date= |title=Functional linear regression analysis for longitudinal data |url=https://projecteuclid.org/journals/annals-of-statistics/volume-33/issue-6/Functional-linear-regression-analysis-for-longitudinal-data/10.1214/009053605000000660.full |journal=The Annals of Statistics |volume=33 |issue=6 |pages=2873–2903 |doi=10.1214/009053605000000660 |issn=0090-5364|arxiv=math/0603132 }}</ref><br />
When <math>X</math> and <math>Y</math> are concurrently observed, i.e., <math>\mathcal{S}=\mathcal{T}</math>,<ref>{{Cite journal |last=Grenander |first=Ulf |date= |title=Stochastic processes and statistical inference |url=https://projecteuclid.org/journals/arkiv-for-matematik/volume-1/issue-3/Stochastic-processes-and-statistical-inference/10.1007/BF02590638.full |journal=Arkiv för Matematik |volume=1 |issue=3 |pages=195–277 |doi=10.1007/BF02590638 |issn=0004-2080}}</ref> it is reasonable to consider a historical functional linear model, where the current value of <math>Y</math> only depends on the history of <math>X</math>, i.e., <math>\beta(s,t)=0</math> for <math>s>t</math> in model ({{EquationNote|4}}).<ref name=wang:16/><ref>{{Cite journal |last=Malfait |first=Nicole |last2=Ramsay |first2=James O. |date=2003 |title=The historical functional linear model |url=https://onlinelibrary.wiley.com/doi/10.2307/3316063 |journal=Canadian Journal of Statistics |language=en |volume=31 |issue=2 |pages=115–128 |doi=10.2307/3316063 |issn=1708-945X|url-access=subscription }}</ref> A simpler version of the historical functional linear model is the functional concurrent model (see below).<br />
Adding multiple functional covariates, model ({{EquationNote|4}}) can be extended to
{{NumBlk|::|<math display="block">Y(t) = \beta_0(t) + \sum_{j=1}^p\int_{\mathcal{S}_j} \beta_j(s,t) X^c_j(s)\,ds + \varepsilon(t),\ \text{for}\ t\in\mathcal{T},</math>|{{EquationRef|5}}}}
where for <math>j=1,\ldots,p</math>, <math>X_j^c(\cdot)=X_j(\cdot) - \mathbb{E}(X_j(\cdot))</math> is a centered functional covariate with ___domain <math>\mathcal{S}_j</math>, and <math>\beta_j(\cdot,\cdot)</math> is the corresponding coefficient function with the same ___domain, respectively.<ref name=wang:16/> In particular, taking <math>X_j(\cdot)</math> as a constant function yields a special case of model ({{EquationNote|5}})
<math display="block">Y(t) = \sum_{j=1}^p X_j \beta_j(t) + \varepsilon(t),\ \text{for}\ t\in\mathcal{T},</math>
▲Assuming that
{{NumBlk|::|<math display="block">Y(t) = \alpha_0(t) + \alpha(t)X(t)+\varepsilon(t),\ \text{for}\ t\in\mathcal{T},</math>|{{EquationRef|6}}}}
where <math>\alpha_0</math> and <math>\alpha</math> are coefficient functions. Note that model ({{EquationNote|6}}) assumes the value of <math>Y</math> at time <math>t</math>, i.e., <math>Y(t)</math>, only depends on that of <math>X</math> at the same time, i.e., <math>X(t)</math>. Various estimation methods can be applied to model ({{EquationNote|6}}).<ref>{{Cite journal |last=Fan |first=Jianqing |last2=Zhang |first2=Wenyang |date= |title=Statistical estimation in varying coefficient models |url=https://projecteuclid.org/journals/annals-of-statistics/volume-27/issue-5/Statistical-estimation-in-varying-coefficient-models/10.1214/aos/1017939139.full |journal=The Annals of Statistics |volume=27 |issue=5 |pages=1491–1518 |doi=10.1214/aos/1017939139 |issn=0090-5364}}</ref><ref>{{Cite journal |last=Huang |first=Jianhua Z. |last2=Wu |first2=Colin O. |last3=Zhou |first3=Lan |date=2004 |title=Polynomial Spline Estimation and Inference for Varying Coefficient Models with Longitudinal Data |url=https://www.jstor.org/stable/24307415 |journal=Statistica Sinica |volume=14 |issue=3 |pages=763–788 |issn=1017-0405}}</ref><ref>{{Cite journal |last=Şentürk |first=Damla |last2=Müller |first2=Hans-Georg |date=2010-09-01 |title=Functional Varying Coefficient Models for Longitudinal Data |url=https://www.tandfonline.com/doi/abs/10.1198/jasa.2010.tm09228 |journal=Journal of the American Statistical Association |doi=10.1198/jasa.2010.tm09228 |issn=0162-1459|url-access=subscription }}</ref><br />
Adding multiple functional covariates, model ({{EquationNote|6}}) can also be extended to
<math display="block">Y(t) = \alpha_0(t) + \sum_{j=1}^p\alpha_j(t)X_j(t)+\varepsilon(t),\ \text{for}\ t\in\mathcal{T},</math>
where <math>X_1,\ldots,X_p</math> are multiple functional covariates with ___domain <math>\mathcal{T}</math> and <math>\alpha_0,\alpha_1,\ldots,\alpha_p</math> are the coefficient functions with the same ___domain.<ref name=wang:16/>
== Functional nonlinear models ==
=== Functional polynomial models ===
Functional polynomial models
where
=== Functional single and multiple index models ===
A functional multiple index model is given by
Taking
Estimation methods for functional single and multiple index models are available.<ref name=chen:11/><ref>{{Cite journal |last=Jiang |first=Ci-Ren |last2=Wang |first2=Jane-Ling |date= |title=Functional single index models for longitudinal data |url=https://projecteuclid.org/journals/annals-of-statistics/volume-39/issue-1/Functional-single-index-models-for-longitudinal-data/10.1214/10-AOS845.full |journal=The Annals of Statistics |volume=39 |issue=1 |pages=362–388 |doi=10.1214/10-AOS845 |issn=0090-5364|arxiv=1103.1726 }}</ref>
=== Functional additive models (FAMs) ===
Given an expansion of a functional covariate
where <math>f_k</math> satisfies <math>\mathbb{E}(f_k(x_k))=0</math> for <math>k\in\mathbb{N}</math>.<ref name=wang:16/><ref>{{Cite journal |last=Müller |first=Hans-Georg |last2=Yao |first2=Fang |date=2008-12-01 |title=Functional Additive Models |url=https://www.tandfonline.com/doi/abs/10.1198/016214508000000751 |journal=Journal of the American Statistical Association |doi=10.1198/016214508000000751 |issn=0162-1459|url-access=subscription }}</ref> Another form of FAMs consists of a sequence of time-additive models:
<math display="block">\mathbb{E}(Y|X(t_1),\ldots,X(t_p))=\sum_{j=1}^p f_j(X(t_j)),</math>
where <math>\{t_1,\ldots,t_p\}</math> is a dense grid on <math>\mathcal{T}</math> with increasing size <math>p\in\mathbb{N}</math>, and <math>f_j(x) = g(t_j,x)</math> with <math>g</math> a smooth function, for <math>j=1,\ldots,p</math><ref name=wang:16/><ref>{{Cite journal |last=Fan |first=Yingying |last2=James |first2=Gareth M. |last3=Radchenko |first3=Peter |date= |title=Functional additive regression |url=https://projecteuclid.org/journals/annals-of-statistics/volume-43/issue-5/Functional-additive-regression/10.1214/15-AOS1346.full |journal=The Annals of Statistics |volume=43 |issue=5 |pages=2296–2325 |doi=10.1214/15-AOS1346 |issn=0090-5364|arxiv=1510.04064 }}</ref>
== Extensions ==
A direct extension of
# [[Variance function]] <math>\text{Var}(Y|X) = V(\mu)</math>, where <math>\mu = \mathbb{E}(Y|X)</math> is the [[Conditional expectation|conditional mean]];
# Link function <math>g</math> connecting the conditional mean and the linear predictor through <math>\mu=g(\eta)</math>.
== See also ==
* [[Functional data analysis
* [[Functional * [[Karhunen–Loève theorem]]
▲* [[Generalized linear model|Generalized linear model]]
== References ==
▲* [[Stochastic processes|Stochastic processes]]
<references/>
[[Category:Regression analysis]]
|