Functional regression: Difference between revisions

Content deleted Content added
Ms.chen (talk | contribs)
OAbot (talk | contribs)
m Open access bot: url-access updated in citation with #oabot.
 
(158 intermediate revisions by 17 users not shown)
Line 1:
{{Short description|Type of regression analysis}}
{{User sandbox}}
'''Functional regression''' is a version of the [[Regression analysis|regression analysis]] when [[Dependent and independent variables|responses]] or [[Dependent and independent variables|covariates]] include [[Functional data analysis|functional data]]. One the one hand, functionalFunctional regression models can be classified into four types depending on whether the responseresponses or covariates are functional or scalar: (i) scalar responseresponses with functional covariates, (ii) functional responseresponses with scalar covariates, (iii) functional responseresponses with functional covariates, and (iv) scalar or functional responseresponses with functional and scalar covariates. On the otherIn handaddition, functional regression models can be [[Linear regression|linear]], partially linear, or [[Nonlinear regression|nonlinear]]. In particular, functional polynomial models, functional [[Semiparametric_regressionSemiparametric regression#Index_modelsIndex models|single and multiple singleindex models]] and functional [[Additive model|additive modelsmodel]]s are three special cases of functional nonlinear models.
<!-- EDIT BELOW THIS LINE -->
'''Functional regression''' is a version of the [[Regression analysis|regression analysis]] when [[Dependent and independent variables|responses]] or [[Dependent and independent variables|covariates]] include [[Functional data analysis|functional data]]. One the one hand, functional regression models can be classified into four types depending on whether the response or covariates are functional or scalar: (i) scalar response with functional covariates, (ii) functional response with scalar covariates, (iii) functional response with functional covariates, and (iv) scalar or functional response with functional and scalar covariates. On the other hand, functional regression models can be [[Linear regression|linear]], partially linear, or [[Nonlinear regression|nonlinear]]. In particular, functional polynomial models, functional [[Semiparametric_regression#Index_models|single and multiple single models]] and functional [[Additive model|additive models]] are three special cases of functional nonlinear models.
 
__TOC__
 
== Functional linear models (FLMs) ==
Functional linear models (FLMs) are an extension of [[Linear regression|linear regressionmodels]] (LMs). A linear model with scalar response <math>Y\in\mathbb{R}</math> and scalar covariates <math>X\in\mathbb{R}^p</math>, which can be written as
{{NumBlk|::|<math display="block">Y = \beta_0 + \langle X,\beta\rangle + \epsilonvarepsilon,</math>|{{EquationRef|1}}}}
where <math>\langle\cdot,\cdot\rangle</math> denotes the [[Inner product space|inner product]] in [[Euclidean space|Euclidean space]], <math>\beta_0\in\mathbb{R}</math> and <math>\beta\in\mathbb{R}^p</math> denote the regression coefficients, and <math>\epsilonvarepsilon</math> is a random error with [[Expected value|mean]] zero and finite [[Variance|variance]]. FLMs can be divided into threetwo types based on the responses and covariates.
 
=== Functional linear models with scalar responseresponses ===
Functional linear models with scalar response (also known as [[Generalized_functional_linear_model#Functional_linear_regression_.28FLR.29|functional linear regression (FLR)]])responses can arebe obtained by replacing the scalar covariates <math>X</math> and the coefficient vector <math>\beta</math> in the traditional multivariate linear model ({{EquationNote|1}}) by a centered functional covariate <math>X^c(t\cdot) = X(t\cdot) - \mathbb{E}(X(t\cdot))</math> and a coefficient function <math>\beta = \beta(t\cdot)</math> forwith [[Domain of a function|___domain]] <math>t\in\mathcal{T}</math>, respectively, and replacing the inner product in Euclidean space by that in [[Hilbert space]] [[Lp space|<math>L^2</math>]],
{{NumBlk|::|<math display="block">Y = \beta_0 + \langle X^c, \beta\rangle +\epsilonvarepsilon = \beta_0 + \int_\mathcal{T} X^c(t)\beta(t)\,dt + \epsilonvarepsilon,</math>|{{EquationRef|12}}}}
where <math>\langle \cdot, \cdot \rangle</math> here denotes the inner product in [[Lp space|<math>L^2</math> space]]. One approach to estimating <math>\beta_0</math> and <math>\beta(t\cdot)</math> is to expand the centered covariate <math>X^c(\cdot)</math> and the coefficient function <math>\beta(t\cdot)</math> in the same [[Basis function|functional basis]], suchfor asexample, [[B-spline|B-spline]] basis or the eigenbasis used in the [[Karhunen&ndash;Lo&egrave;veLoève theorem|Karhunen&ndash;Lo&egrave;veLoève expansion]]. Suppose <math>\{\phi_k\}_{k=1}^\infty</math> is an [[Orthonormal basis|orthonormal basis]] of <math>L^2</math> space. Expanding <math>X^c</math> and <math>\beta</math> in this basis, <math>X^c(t\cdot) = \sum_{k=1}^\infty x_k \phi_k(t\cdot)</math>, <math>\beta(t\cdot) = \sum_{k=1}^\infty \beta_k \phi_k(t\cdot)</math>, model ({{EquationNote|12}}) becomes
<math display="block">Y = \beta_0 + \sum_{k=1}^\infty \beta_k x_k +\epsilonvarepsilon.</math>
InFor implementation, regularization is needed and can be done through trucationtruncation, <math>L^2</math> penalization or <math>L^1</math> penalization.<ref name=morr:15>Morris{{cite (2015)journal|doi=10. "1146/annurev-statistics-010814-020413|title=Functional regression"Regression|year=2015|last1=Morris|first1=Jeffrey S. ''|journal=[[Annual Review of Statistics and Its Application''. ''']]|volume=2''':321&ndash;359|issue=1|pages=321–359|arxiv=1406. [[Digital object identifier4068|doi]]:[http://doibibcode=2015AnRSA.org/10.1146/annurev-statistics-010814-020413 10.1146/annurev-statistics-010814-020413]2..321M|s2cid=18637009}}</ref>. In addition, a [[Reproducing kernel Hilbert space|reproducing kernel Hilbert space]] (RKHLRKHS) approach can also be used to estimatingestimate <math>\beta_0</math> and <math>\beta(\cdot)</math> in model ({{EquationNote|12}}) has also been proposed<ref>Yuan and Cai (2010). "A reproducing kernel Hilbert space approach to functional linear regression". ''The Annals of Statistics''. '''38''' (6):3412&ndash;3444. [[Digital object identifier|doi]]:[http://projecteucliddoi.org/euclid10.aos1214/129112696209-AOS772 10.1214/09-AOS772].</ref>.
<br />
 
Adding multiple functional and scalar covariates, themodel FLR({{EquationNote|2}}) can be extended asto
{{NumBlk|::|<math display="block">Y = \langle\mathbfsum_{Zk=1},\alpha^q Z_k\ranglealpha_k + \sum_{j=1}^p \int_{\mathcal{T}_j} X_j^c(t) \beta_j(t) \,dt + \epsilonvarepsilon,</math>|{{EquationRef|3}}}}
where <math>\mathbf{Z}=(Z_1,\cdotsldots,Z_q)^T</math> are scalar covariates with <math>Z_1=1</math> is a vector of scalar covariates, <math>\alpha=(\alpha_1,\cdotsldots,\alpha_q)^T</math> isare a vector ofregression coefficients corresponding tofor <math>\mathbf{Z}</math>Z_1, <math>\langle\cdotldots,\cdot\rangleZ_q</math>, denotes the inner product in Euclidean spacerespectively, <math>X^c_1,\cdots,X^c_pc_j</math> areis multiplea centered functional covariatescovariate given by <math>X_j^c(\cdot) = X_j(\cdot) - \mathbb{E}(X_j(\cdot))</math>, <math>\beta_j</math> is regression coefficient function for <math>X_j^c(\cdot)</math>, and <math>\mathcal{T}_j</math> is the [[Domain___domain of a<math>X_j</math> function|___domain]]and of<math>\beta_j</math>, for <math>X_j(j=1,\cdot)ldots,p</math>. However, due to the parametric component <math>\alpha</math>, the estimation ofmethods thisfor model is({{EquationNote|2}}) differentcannot frombe thatused ofin thethis FLRcase<ref name=wang:16>{{cite journal|doi=10.1146/annurev-statistics-041715-033624|title=Functional GeneralData estimationAnalysis|year=2016|last1=Wang|first1=Jane-Ling|last2=Chiou|first2=Jeng-Min|last3=Müller|first3=Hans-Georg|journal=[[Annual approachesReview haveof beenStatistics proposedand Its Application]]|volume=3|issue=1|pages=257–295|bibcode=2016AnRSA...3..257W|url=https://zenodo.org/record/895750|doi-access=free}}</ref>Yao, M&uuml;ller and Wangalternative estimation methods for model (2005{{EquationNote|3}}) are available.<ref>{{Cite "Functionaljournal linear|last=Kong regression|first=Dehan analysis|last2=Xue for|first2=Kaijie longitudinal|last3=Yao data"|first3=Fang |last4=Zhang |first4=Hao H. ''The|date= Annals|title=Partially offunctional Statistics''.linear '''33'''regression (6):2873&ndash;2903.in [[Digitalhigh objectdimensions identifier|doi]]:[httpurl=https://dxacademic.doioup.orgcom/biomet/article-lookup/doi/10.12141093/009053605000000660biomet/asv062 |journal=Biometrika |language=en |volume=103 |issue=1 |pages=147–159 |doi=10.12141093/009053605000000660]biomet/asv062 |issn=0006-3444|url-access=subscription }}</ref><ref>Hu,{{Cite Wangjournal and|last=Hu Carroll|first=Z. (|date=2004).-06-01 "|title=Profile-kernel versus backfitting in the partially linear models for longitudinal/clustered data". ''Biometrika''. '''91''' (2): 251&ndash;262. [[Digital object identifier|doi]]:[httpurl=https://doiacademic.orgoup.com/biomet/article-lookup/doi/10.1093/biomet/91.2.251 |journal=Biometrika |language=en |volume=91 |issue=2 |pages=251–262 |doi=10.1093/biomet/91.2.251] |issn=0006-3444|url-access=subscription }}</ref>.<br />
 
=== Functional linear models with functional responseresponses ===
For a functional response <math>Y(\cdot)</math> onwith ___domain <math>\mathcal{T}_Y</math> and a functional covariate <math>X(\cdot)</math> onwith ___domain <math>\mathcal{TS}_X</math>, two primaryFLMs modelsregressing <math>Y(\cdot)</math> on <math>X(\cdot)</math> have been considered.<ref name=wang:16/><ref>Ramsay and [[Bernard Silverman|Silverman]] (2005). ''Functional data analysis'', 2nd ed., New York&#160;: Springer, [[Special:BookSources/038740080X{{ISBN|ISBN 0-387-40080-X]]}}.</ref>. One functionalof linearthese modeltwo regressingmodels <math>Y(\cdot)</math>is on <math>X(\cdot)</math> isof giventhe byform
{{NumBlk|::|<math display="block">Y(st) = \beta_0(st) + \int_{\mathcal{TS}_X} \beta(s,t) X^c(ts)dt\,ds + \epsilonvarepsilon(st),\ \text{for}\ t\in\mathcal{T},</math>|{{EquationRef|4}}}}
where <math>s\in\mathcal{T}_Y</math>, <math>t\in\mathcal{T}_X</math>, <math>X^c(\cdot) = X(\cdot) - \mathbb{E}(X(\cdot))</math> is still the centered functional covariate, <math>\beta_0(\cdot)</math> and <math>\beta(\cdot,\cdot)</math> are coefficient functions, and <math>\epsilonvarepsilon(\cdot)</math> is usually assumed to be a Gaussianrandom process with mean zero and finite variance. In this case, at any given time <math>st\in\mathcal{T}_Y</math>, the value of <math>Y</math>, i.e., <math>Y(st)</math>, depends on the entire trajectory of <math>X</math>. ThisModel model({{EquationNote|4}}), for any given time <math>st</math>, is an extension of the traditional [[multivariate linear regression]] model by simply replacingwith the inner product in Euclidean space replaced by that in <math>L^2</math> space. An estimating equation motivated by multivariate linear regression is
<math display="block">r_{XY} = R_{XX}\beta, \text{ for } \beta\in L^2(\mathcal{TS}_X\times\mathcal{TS}_X),</math>
where <math>r_{XY}(s,t) = \text{cov}(X(s),Y(t))</math>, <math>R_{XX}: L^2(\mathcal{S}\times L^2\mathcal{S}) \rightarrow L^2(\mathcal{S}\times L^2\mathcal{T})</math> is defined as <math>(R_{XX}\beta)(s,t) = \intint_\mathcal{S} r_{XX}(s,w)\beta(w,t)dw</math> with <math>r_{XX}(s,tw) = \text{cov}(X(s),X(tw))</math>. Regularization is needed becausefor <math>R_s,w\in\mathcal{XXS}</math>.<ref isname=wang:16/> aRegularization compactis operatorneeded and itscan inversebe isdone notthrough boundedtruncation, <math>L^2</math> penalization or <math>L^1</math> penalization.<ref name=wangmorr:1615/>Wang, ChiouVarious andestimation M&uuml;llermethods for model (2016{{EquationNote|4}}) are available.<ref>{{Cite "Functionaljournal data|last=Ramsay analysis"|first=J. ''AnnualO. Review|last2=Dalzell |first2=C. J. |date=1991 |title=Some Tools for Functional Data Analysis |url=https://www.jstor.org/stable/2345586 |journal=Journal of Statisticsthe andRoyal ItsStatistical Application''Society. '''Series B (Methodological) |volume=53 |issue=3''':257&ndash;295. [[Digital|pages=539–572 object|issn=0035-9246}}</ref><ref>{{Cite journal identifier|doi]]:[httplast=Yao |first=Fang |last2=Müller |first2=Hans-Georg |last3=Wang |first3=Jane-Ling |date= |title=Functional linear regression analysis for longitudinal data |url=https://dx.doiprojecteuclid.org/10.1146journals/annurevannals-of-statistics/volume-04171533/issue-0336246/Functional-linear-regression-analysis-for-longitudinal-data/10.1214/009053605000000660.full |journal=The Annals of Statistics |volume=33 |issue=6 |pages=2873–2903 |doi=10.11461214/annurev-statistics009053605000000660 |issn=0090-041715-033624]5364|arxiv=math/0603132 }}</ref>.<br />
When <math>X</math> and <math>Y</math> are concurrently observed, i.e., <math>\mathcal{S}=\mathcal{T}</math>,<ref>{{Cite journal |last=Grenander |first=Ulf |date= |title=Stochastic processes and statistical inference |url=https://projecteuclid.org/journals/arkiv-for-matematik/volume-1/issue-3/Stochastic-processes-and-statistical-inference/10.1007/BF02590638.full |journal=Arkiv för Matematik |volume=1 |issue=3 |pages=195–277 |doi=10.1007/BF02590638 |issn=0004-2080}}</ref> it is reasonable to consider a historical functional linear model, where the current value of <math>Y</math> only depends on the history of <math>X</math>, i.e., <math>\beta(s,t)=0</math> for <math>s>t</math> in model ({{EquationNote|4}}).<ref name=wang:16/><ref>{{Cite journal |last=Malfait |first=Nicole |last2=Ramsay |first2=James O. |date=2003 |title=The historical functional linear model |url=https://onlinelibrary.wiley.com/doi/10.2307/3316063 |journal=Canadian Journal of Statistics |language=en |volume=31 |issue=2 |pages=115–128 |doi=10.2307/3316063 |issn=1708-945X|url-access=subscription }}</ref> A simpler version of the historical functional linear model is the functional concurrent model (see below).<br />
In particular, taking <math>X(\cdot)</math> as a constant function gives a special case of this model
Adding multiple functional covariates, model ({{EquationNote|4}}) can be extended to
<math display="block">Y(s) = \sum_{j=1}^p X_j \beta_j(s) + \epsilon(s)</math>
{{NumBlk|::|<math display="block">Y(t) = \beta_0(t) + \sum_{j=1}^p\int_{\mathcal{S}_j} \beta_j(s,t) X^c_j(s)\,ds + \varepsilon(t),\ \text{for}\ t\in\mathcal{T},</math>|{{EquationRef|5}}}}
which is a FLM with functional response and scalar covariates.
where for <math>j=1,\ldots,p</math>, <math>X_j^c(\cdot)=X_j(\cdot) - \mathbb{E}(X_j(\cdot))</math> is a centered functional covariate with ___domain <math>\mathcal{S}_j</math>, and <math>\beta_j(\cdot,\cdot)</math> is the corresponding coefficient function with the same ___domain, respectively.<ref name=wang:16/> In particular, taking <math>X_j(\cdot)</math> as a constant function yields a special case of model ({{EquationNote|5}})
<math display="block">Y(st) = \sum_{j=1}^p X_j \beta_j(st) + \epsilonvarepsilon(st),\ \text{for}\ t\in\mathcal{T},</math>
which is a FLM with functional responseresponses and scalar covariates.
 
==== ConcurrentFunctional concurrent models ====
Assuming that <math>\mathcal{TS}_X = \mathcal{T}_Y := \mathcal{T}</math>, another model, known as the functional concurrent model, sometimes also referred to as calledthe varying-coefficient model, is of the form
{{NumBlk|::|<math display="block">Y(st) = \alpha_0(st) + \alpha(st)X(st)+\epsilonvarepsilon(st),\ \text{for}\ t\in\mathcal{T},</math>|{{EquationRef|6}}}}
where <math>\alpha_0</math> and <math>\alpha</math> are coefficient functions. Note that model ({{EquationNote|6}}) assumes the value of <math>Y</math> at time <math>t</math>, i.e., <math>Y(t)</math>, only depends on that of <math>X</math> at the same time, i.e., <math>X(t)</math>. Various estimation methods can be applied to model ({{EquationNote|6}}).<ref>{{Cite journal |last=Fan |first=Jianqing |last2=Zhang |first2=Wenyang |date= |title=Statistical estimation in varying coefficient models |url=https://projecteuclid.org/journals/annals-of-statistics/volume-27/issue-5/Statistical-estimation-in-varying-coefficient-models/10.1214/aos/1017939139.full |journal=The Annals of Statistics |volume=27 |issue=5 |pages=1491–1518 |doi=10.1214/aos/1017939139 |issn=0090-5364}}</ref><ref>{{Cite journal |last=Huang |first=Jianhua Z. |last2=Wu |first2=Colin O. |last3=Zhou |first3=Lan |date=2004 |title=Polynomial Spline Estimation and Inference for Varying Coefficient Models with Longitudinal Data |url=https://www.jstor.org/stable/24307415 |journal=Statistica Sinica |volume=14 |issue=3 |pages=763–788 |issn=1017-0405}}</ref><ref>{{Cite journal |last=Şentürk |first=Damla |last2=Müller |first2=Hans-Georg |date=2010-09-01 |title=Functional Varying Coefficient Models for Longitudinal Data |url=https://www.tandfonline.com/doi/abs/10.1198/jasa.2010.tm09228 |journal=Journal of the American Statistical Association |doi=10.1198/jasa.2010.tm09228 |issn=0162-1459|url-access=subscription }}</ref><br />
Note that this model assumes the value of <math>Y</math> at time <math>s</math>, i.e. <math>Y(s)</math>, only depends on that of <math>X</math> at the same time, <math>X(s)</math>, and thus is a concurrent regression model. For estimation, one may use the fact that, for any <math>s\in\mathcal{T}</math> fixed, an estimate of <math>\alpha(s)</math> can be computed by applying [[Ordinary least squares|ordinary least squares]] to a neighborhood of <math>s</math><ref name=wang:16/>.
Adding multiple functional covariates, model ({{EquationNote|6}}) can also be extended to
<math display="block">Y(t) = \alpha_0(t) + \sum_{j=1}^p\alpha_j(t)X_j(t)+\varepsilon(t),\ \text{for}\ t\in\mathcal{T},</math>
where <math>X_1,\ldots,X_p</math> are multiple functional covariates with ___domain <math>\mathcal{T}</math> and <math>\alpha_0,\alpha_1,\ldots,\alpha_p</math> are the coefficient functions with the same ___domain.<ref name=wang:16/>
 
== Functional nonlinear models ==
=== Functional polynomial models ===
Functional polynomial models are an extension of the FLMs with scalar responses, analogous to extending linear regression to [[polynomial regression]]. For a scalar response <math>Y</math> and a functional covariate <math>X(\cdot)</math> definedwith on an interval___domain <math>\mathcal{T}</math>, the simplest example of functional polynomial models is functional quadratic regression<ref name="yao:10">Yao{{Cite andjournal M&uuml;ller|last=Yao (2010)|first=F. "Functional|last2=Muller quadratic regression"|first2=H. ''Biometrika''-G. '''97'''|date=2010-03-01 (1):49&ndash;64.|title=Functional [[Digitalquadratic objectregression identifier|doi]]:[httpurl=https://wwwacademic.jstoroup.orgcom/stablebiomet/27798896article-lookup/doi/10.1093/biomet/asp069 |journal=Biometrika |language=en |volume=97 |issue=1 |pages=49–64 |doi=10.1093/biomet/asp069] |issn=0006-3444|url-access=subscription }}</ref>
<math display="block">Y = \alpha + \int_\mathcal{T}\beta(t)X^c(t)\,dt + \int_\mathcal{T} \int_\mathcal{T} \gamma(s,t) X^c(s)X^c(t) dsdt\,ds\,dt + \epsilonvarepsilon,</math>
where <math>X^c(\cdot) = X(\cdot) - \mathbb{E}(X(\cdot))</math> is the centered functional covariate, <math>\alpha</math> is a scalar coefficient, <math>\beta(\cdot)</math> and <math>\gamma(\cdot,\cdot)</math> are coefficient functions definedwith ondomains <math>\mathcal{T}</math> and <math>\mathcal{T}\times\mathcal{T}</math>, respectively, and <math>\epsilonvarepsilon</math> is a random error with mean zero and finite variance. By analogy to FLMs with scalar responses, estimation of functional polynomial models can be obtained through expanding both the centered covariate <math>X^c</math> and the coefficient functions <math>\beta</math> and <math>\gamma</math> in an orthonormal basis.<ref name=yao:10/>.
 
=== Functional single and multiple index models ===
A functional multiple index model is given by
<math display="block">Y = g\left(\int_{\mathcal{T}} X^c(t) \beta_1(t)\,dt, \cdotsldots, \int_{\mathcal{T}} X^c(t) \beta_p(t)\,dt \right) + \epsilonvarepsilon.</math>
Taking <math>p=1</math> yields a functional single index model. However, for <math>p>1</math>, this model is problematic due to [[Curse of dimensionality|curse of dimensionality]]. In other words, withWith <math>p>1</math> and relatively small sample sizes, thisthe modelestimator oftengiven leadsby tothis highmodel variabilityoften ofhas thelarge estimatorvariance.<ref name="chen:11">{{Cite journal |last=Chen, |first=Dong |last2=Hall and|first2=Peter M&uuml;ller|last3=Müller (2011).|first3=Hans-Georg "|date= |title=Single and multiple index functional regression models with nonparametric link" |url=https://projecteuclid.org/journals/annals-of-statistics/volume-39/issue-3/Single-and-multiple-index-functional-regression-models-with-nonparametric-link/10.1214/11-AOS882.full ''|journal=The Annals of Statistics''. '''|volume=39''' (|issue=3):1720&ndash;1747. [[Digital|pages=1720–1747 object identifier|doi]]:[http://www.jstor.org/stable/23033613 =10.1214/11-AOS882] |issn=0090-5364|arxiv=1211.5018 }}</ref>. Alternatively, aAn preferablealternative <math>p</math>-component functional multiple index model can be formedexpressed as
<math display="block">Y = g_1\left(\int_{\mathcal{T}} X^c(t) \beta_1(t)\,dt\right)+ \cdots+ g_p\left(\int_{\mathcal{T}} X^c(t) \beta_p(t)\,dt \right) + \epsilonvarepsilon.</math>
Estimation methods for functional single and multiple index models are available.<ref name=chen:11/><ref>{{Cite journal |last=Jiang |first=Ci-Ren |last2=Wang |first2=Jane-Ling |date= |title=Functional single index models for longitudinal data |url=https://projecteuclid.org/journals/annals-of-statistics/volume-39/issue-1/Functional-single-index-models-for-longitudinal-data/10.1214/10-AOS845.full |journal=The Annals of Statistics |volume=39 |issue=1 |pages=362–388 |doi=10.1214/10-AOS845 |issn=0090-5364|arxiv=1103.1726 }}</ref>
 
=== Functional additive models (FAMs) ===
Given an expansion of a functional covariate <math>X</math> with ___domain <math>\mathcal{T}</math> in an orthonormal basis <math>\{\phi_k\}_{k=1}^\infty</math>: <math>X(t) = \sum_{k=1}^\infty x_k \phi_k(t)</math>, a functional linear model with scalar responseresponses asshown statedin beforemodel ({{EquationNote|2}}) can be written as
<math display="block">\mathbb{E}(Y|X)=\mathbb{E}(Y) + \sum_{k=1}^\infty \beta_k x_k.</math>
AOne functionalform additiveof modelFAMs is obtained by replacing the linear function of <math>x_k</math>, i.e., <math>\beta_k x_k</math>, by a general smooth function <math>f_k</math>,
<math display="block">\mathbb{E}(Y|X)=\mathbb{E}(Y) + \sum_{k=1}^\infty f_k(x_k),</math>
where <math>f_k</math> satisfies <math>\mathbb{E}(f_k(x_k))=0</math> for <math>k\in\mathbb{N}</math>.<ref name=wang:16/>. General estimation methods have been proposed<ref>M&uuml;ller{{Cite andjournal |last=Müller |first=Hans-Georg |last2=Yao (|first2=Fang |date=2008).-12-01 "|title=Functional additiveAdditive Models models"|url=https://www.tandfonline.com/doi/abs/10.1198/016214508000000751 ''|journal=Journal of the American Statistical Association''. '''103''' (484):1534&ndash;1544. [[Digital object identifier|doi]]:[http://dx.doi.org/=10.1198/016214508000000751 10.1198/016214508000000751]|issn=0162-1459|url-access=subscription }}</ref><ref>Fan, JamesAnother andform Radchenkoof (2015).FAMs "Functionalconsists additiveof regression".a ''The Annalssequence of Statistics''.time-additive '''43''' (5)models:2296&ndash;2325. [[Digital object identifier|doi]]:[http://dx.doi.org/10.1214/15-AOS1346 10.1214/15-AOS1346]</ref>.
<math display="block">\mathbb{E}(Y|X(t_1),\ldots,X(t_p))=\sum_{j=1}^p f_j(X(t_j)),</math>
where <math>\{t_1,\ldots,t_p\}</math> is a dense grid on <math>\mathcal{T}</math> with increasing size <math>p\in\mathbb{N}</math>, and <math>f_j(x) = g(t_j,x)</math> with <math>g</math> a smooth function, for <math>j=1,\ldots,p</math><ref name=wang:16/><ref>{{Cite journal |last=Fan |first=Yingying |last2=James |first2=Gareth M. |last3=Radchenko |first3=Peter |date= |title=Functional additive regression |url=https://projecteuclid.org/journals/annals-of-statistics/volume-43/issue-5/Functional-additive-regression/10.1214/15-AOS1346.full |journal=The Annals of Statistics |volume=43 |issue=5 |pages=2296–2325 |doi=10.1214/15-AOS1346 |issn=0090-5364|arxiv=1510.04064 }}</ref>
 
== Extensions ==
A direct extension of functionalFLMs linearwith modelsscalar withresponses scalarshown responsein model ({{EquationNote|2}}) is to add a link function to create a [[Generalized functional linear model|generalized functional linear model]] (GFLM) by analogy to extending [[Linear regression|linear regression]] to [[Generalized linear model|generalized linear regression]] (GLM), of which the three components are:
# Linear predictor <math>\eta = \beta_0 + \int_{\mathcal{T}} X^c(t)\beta(t)\,dt</math>;
# [[Variance function]] <math>\text{Var}(Y|X) = V(\mu)</math>, where <math>\mu = \mathbb{E}(Y|X)</math> is the [[Conditional expectation|conditional mean]];
# Link function <math>g</math> connecting the firstconditional twomean componentsand the linear predictor through <math>\mu=g(\eta)</math>.
 
== See also ==
* [[Functional data analysis|]]
* [[Functional dataprincipal component analysis]]
* [[Karhunen&ndash;Loève theorem]]
* [[Functional principal component analysis|Functional principal component analysis]]
* [[Generalized linear model|Generalizedfunctional linear model]]
* [[Karhunen&ndash;Lo&egrave;ve_theorem|Karhunen&ndash;Lo&egrave;ve theorem]]
* [[Stochastic processes|Stochastic processes]]
* [[Generalized linear model|Generalized linear model]]
* [[Generalized functional linear model|Generalized functional linear model]]
* [[Stochastic processes|Stochastic processes]]
* [[Lp space|Lp space]]
 
== References ==