Functional regression: Difference between revisions

Content deleted Content added
Cleaning up accepted Articles for creation submission (AFCH 0.9)
OAbot (talk | contribs)
m Open access bot: url-access updated in citation with #oabot.
 
(30 intermediate revisions by 15 users not shown)
Line 1:
{{Short description|Type of regression analysis}}
'''Functional regression''' is a version of [[Regression analysis|regression analysis]] when [[Dependent and independent variables|responses]] or [[Dependent and independent variables|covariates]] include [[Functional data analysis|functional data]]. Functional regression models can be classified into four types depending on whether the responses or covariates are functional or scalar: (i) scalar responses with functional covariates, (ii) functional responses with scalar covariates, (iii) functional responses with functional covariates, and (iv) scalar or functional responses with functional and scalar covariates. In addition, functional regression models can be [[Linear regression|linear]], partially linear, or [[Nonlinear regression|nonlinear]]. In particular, functional polynomial models, functional [[Semiparametric_regressionSemiparametric regression#Index_modelsIndex models|single and multiple index models]] and functional [[Additive model|additive modelsmodel]]s are three special cases of functional nonlinear models.
 
__TOC__
Line 5 ⟶ 6:
== Functional linear models (FLMs) ==
Functional linear models (FLMs) are an extension of [[Linear regression|linear models]] (LMs). A linear model with scalar response <math>Y\in\mathbb{R}</math> and scalar covariates <math>X\in\mathbb{R}^p</math> can be written as
{{NumBlk|::|<math display="block">Y = \beta_0 + \langle X,\beta\rangle + \epsilonvarepsilon,</math>|{{EquationRef|1}}}}
where <math>\langle\cdot,\cdot\rangle</math> denotes the [[Inner product space|inner product]] in [[Euclidean space|Euclidean space]], <math>\beta_0\in\mathbb{R}</math> and <math>\beta\in\mathbb{R}^p</math> denote the regression coefficients, and <math>\epsilonvarepsilon</math> is a random error with [[Expected value|mean]] zero and finite [[Variance|variance]]. FLMs can be divided into two types based on the responses.
 
=== Functional linear models with scalar responses ===
Functional linear models with scalar responses can be obtained by replacing the scalar covariates <math>X</math> and the coefficient vector <math>\beta</math> in model ({{EquationNote|1}}) by a centered functional covariate <math>X^c(\cdot) = X(\cdot) - \mathbb{E}(X(\cdot))</math> and a coefficient function <math>\beta = \beta(\cdot)</math> with [[Domain of a function|___domain]] <math>\mathcal{T}</math>, respectively, and replacing the inner product in Euclidean space by that in [[Hilbert space]] [[Lp space|<math>L^2</math>]],
{{NumBlk|::|<math display="block">Y = \beta_0 + \langle X^c, \beta\rangle +\epsilonvarepsilon = \beta_0 + \int_\mathcal{T} X^c(t)\beta(t)\,dt + \epsilonvarepsilon,</math>|{{EquationRef|2}}}}
where <math>\langle \cdot, \cdot \rangle</math> here denotes the inner product in <math>L^2</math>. One approach to estimating <math>\beta_0</math> and <math>\beta(\cdot)</math> is to expand the centered covariate <math>X^c(\cdot)</math> and the coefficient function <math>\beta(\cdot)</math> in the same [[Basis function|functional basis]], for example, [[B-spline|B-spline]] basis or the eigenbasis used in the [[Karhunen&ndash;Lo&egrave;veLoève theorem|Karhunen&ndash;Lo&egrave;veLoève expansion]]. Suppose <math>\{\phi_k\}_{k=1}^\infty</math> is an [[Orthonormal basis|orthonormal basis]] of <math>L^2</math>. Expanding <math>X^c</math> and <math>\beta</math> in this basis, <math>X^c(\cdot) = \sum_{k=1}^\infty x_k \phi_k(\cdot)</math>, <math>\beta(\cdot) = \sum_{k=1}^\infty \beta_k \phi_k(\cdot)</math>, model ({{EquationNote|2}}) becomes
<math display="block">Y = \beta_0 + \sum_{k=1}^\infty \beta_k x_k +\epsilonvarepsilon.</math>
For implementation, regularization is needed and can be done through truncation, <math>L^2</math> penalization or <math>L^1</math> penalization.<ref name=morr:15>Morris{{cite (2015)journal|doi=10. "1146/annurev-statistics-010814-020413|title=Functional regression"Regression|year=2015|last1=Morris|first1=Jeffrey S. ''|journal=[[Annual Review of Statistics and Its Application''. ''']]|volume=2''':321&ndash;359|issue=1|pages=321–359|arxiv=1406. [[Digital object identifier4068|doi]]:[http://doibibcode=2015AnRSA.org/10.1146/annurev-statistics-010814-020413 10.1146/annurev-statistics-010814-020413]2..321M|s2cid=18637009}}</ref>. In addition, a [[Reproducing kernel Hilbert space|reproducing kernel Hilbert space]] (RKHS) approach can also be used to estimate <math>\beta_0</math> and <math>\beta(\cdot)</math> in model ({{EquationNote|2}})<ref>Yuan and Cai (2010). "A reproducing kernel Hilbert space approach to functional linear regression". ''The Annals of Statistics''. '''38''' (6):3412&ndash;3444. [[Digital object identifier|doi]]:[http://doi.org/10.1214/09-AOS772 10.1214/09-AOS772].</ref>
<br />
 
Adding multiple functional and scalar covariates, model ({{EquationNote|2}}) can be extended to
{{NumBlk|::|<math display="block">Y = \sum_{k=1}^q Z_k\alpha_k + \sum_{j=1}^p \int_{\mathcal{T}_j} X_j^c(t) \beta_j(t) \,dt + \epsilonvarepsilon,</math>|{{EquationRef|3}}}}
where <math>Z_1,\cdotsldots,Z_q</math> are scalar covariates with <math>Z_1=1</math>, <math>\alpha_1,\cdotsldots,\alpha_q</math> are regression coefficients for <math>Z_1,\cdotsldots,Z_q</math>, respectively, <math>X^c_j</math> is a centered functional covariate given by <math>X_j^c(\cdot) = X_j(\cdot) - \mathbb{E}(X_j(\cdot))</math>, <math>\beta_j</math> is regression coefficient function for <math>X_j^c(\cdot)</math>, and <math>\mathcal{T}_j</math> is the ___domain of <math>X_j</math> and <math>\beta_j</math>, for <math>j=1,\cdotsldots,p</math>. However, due to the parametric component <math>\alpha</math>, the estimation methods for model ({{EquationNote|2}}) cannot be used in this case<ref name=wang:16>Wang, Chiou{{cite and M&uuml;ller (2016)journal|doi=10. "1146/annurev-statistics-041715-033624|title=Functional data analysis".Data ''Analysis|year=2016|last1=Wang|first1=Jane-Ling|last2=Chiou|first2=Jeng-Min|last3=Müller|first3=Hans-Georg|journal=[[Annual Review of Statistics and Its Application'']]|volume=3|issue=1|pages=257–295|bibcode=2016AnRSA... '''3''':257&ndash;295. [[Digital object identifier.257W|doi]]:[httpurl=https://doizenodo.org/10.1146record/annurev-statistics-041715-033624 10.1146/annurev-statistics895750|doi-041715-033624].access=free}}</ref> and alternative estimation methods for model ({{EquationNote|3}}) are available.<ref>{{Cite journal |last=Kong, |first=Dehan |last2=Xue, |first2=Kaijie |last3=Yao and|first3=Fang |last4=Zhang (2016)|first4=Hao H. "|date= |title=Partially functional linear regression in high dimensions". ''Biometrika''. '''103''' (1):147&ndash;159. [[Digital object identifier|doi]]:[httpurl=https://doiacademic.orgoup.com/biomet/article-lookup/doi/10.1093/biomet/asv062 |journal=Biometrika |language=en |volume=103 |issue=1 |pages=147–159 |doi=10.1093/biomet/asv062]. |issn=0006-3444|url-access=subscription }}</ref><ref>Hu,{{Cite Wangjournal and|last=Hu Carroll|first=Z. (|date=2004).-06-01 "|title=Profile-kernel versus backfitting in the partially linear models for longitudinal/clustered data". ''Biometrika''. '''91''' (2): 251&ndash;262. [[Digital object identifier|doi]]:[httpurl=https://doiacademic.orgoup.com/biomet/article-lookup/doi/10.1093/biomet/91.2.251 |journal=Biometrika |language=en |volume=91 |issue=2 |pages=251–262 |doi=10.1093/biomet/91.2.251]. |issn=0006-3444|url-access=subscription }}</ref>.<br />
 
=== Functional linear models with functional responses ===
For a functional response <math>Y(\cdot)</math> with ___domain <math>\mathcal{T}</math> and a functional covariate <math>X(\cdot)</math> with ___domain <math>\mathcal{S}</math>, two FLMs regressing <math>Y(\cdot)</math> on <math>X(\cdot)</math> have been considered.<ref name=wang:16/><ref>Ramsay and [[Bernard Silverman|Silverman]] (2005). ''Functional data analysis'', 2nd ed., New York&#160;: Springer, [[Special:BookSources/038740080X{{ISBN|ISBN 0-387-40080-X]]}}.</ref>. One of these two models is of the form
{{NumBlk|::|<math display="block">Y(t) = \beta_0(t) + \int_{\mathcal{S}} \beta(s,t) X^c(s)\,ds + \epsilonvarepsilon(t),\ \text{for}\ t\in\mathcal{T},</math>|{{EquationRef|4}}}}
where <math>X^c(\cdot) = X(\cdot) - \mathbb{E}(X(\cdot))</math> is still the centered functional covariate, <math>\beta_0(\cdot)</math> and <math>\beta(\cdot,\cdot)</math> are coefficient functions, and <math>\epsilonvarepsilon(\cdot)</math> is usually assumed to be a random process with mean zero and finite variance. In this case, at any given time <math>t\in\mathcal{T}</math>, the value of <math>Y</math>, i.e., <math>Y(t)</math>, depends on the entire trajectory of <math>X</math>. Model ({{EquationNote|4}}), for any given time <math>t</math>, is an extension of [[Multivariate linear regression|multivariate linear regression]] with the inner product in Euclidean space replaced by that in <math>L^2</math>. An estimating equation motivated by multivariate linear regression is
<math display="block">r_{XY} = R_{XX}\beta, \text{ for } \beta\in L^2(\mathcal{S}\times\mathcal{S}),</math>
where <math>r_{XY}(s,t) = \text{cov}(X(s),Y(t))</math>, <math>R_{XX}: L^2(\mathcal{S}\times\mathcal{S}) \rightarrow L^2(\mathcal{S}\times\mathcal{T})</math> is defined as <math>(R_{XX}\beta)(s,t) = \int_\mathcal{S} r_{XX}(s,w)\beta(w,t)dw</math> with <math>r_{XX}(s,w) = \text{cov}(X(s),X(w))</math> for <math>s,w\in\mathcal{S}</math>.<ref name=wang:16/>. Regularization is needed and can be done through truncation, <math>L^2</math> penalization or <math>L^1</math> penalization.<ref name=morr:15/>. Various estimation methods for model ({{EquationNote|4}}) are available.<ref>{{Cite journal |last=Ramsay and|first=J. O. |last2=Dalzell (1991)|first2=C. "J. |date=1991 |title=Some toolsTools for functionalFunctional dataData analysis"Analysis |url=https://www.jstor.org/stable/2345586 ''|journal=Journal of the Royal Statistical Society. Series B (Methodological)''. '''|volume=53''' (|issue=3):539&ndash;572. http://www.jstor.org/stable/2345586.|pages=539–572 |issn=0035-9246}}</ref><ref>{{Cite journal |last=Yao, M&uuml;ller|first=Fang and|last2=Müller |first2=Hans-Georg |last3=Wang (2005).|first3=Jane-Ling "|date= |title=Functional linear regression analysis for longitudinal data" |url=https://projecteuclid.org/journals/annals-of-statistics/volume-33/issue-6/Functional-linear-regression-analysis-for-longitudinal-data/10.1214/009053605000000660.full ''|journal=The Annals of Statistics''. '''|volume=33''' (|issue=6):2873&ndash;2903. [[Digital object|pages=2873–2903 identifier|doi]]:[http://doi.org/=10.1214/009053605000000660 10.1214|issn=0090-5364|arxiv=math/009053605000000660].0603132 }}</ref>.<br />
When <math>X</math> and <math>Y</math> are concurrently observed, i.e., <math>\mathcal{S}=\mathcal{T}</math>,<ref>{{Cite journal |last=Grenander (1950).|first=Ulf "|date= |title=Stochastic processes and statistical inference". ''Arkiv Matematik''. '''1''' (3):195&ndash;277. [[Digital object identifier|doi]]:[httpurl=https://doiprojecteuclid.org/journals/arkiv-for-matematik/volume-1/issue-3/Stochastic-processes-and-statistical-inference/10.1007/BF02590638.full |journal=Arkiv för Matematik |volume=1 |issue=3 |pages=195–277 |doi=10.1007/BF02590638]. |issn=0004-2080}}</ref>, it is reasonable to consider a historical functional linear model, where the current value of <math>Y</math> only depends on the history of <math>X</math>, i.e., <math>\beta(s,t)=0</math> for <math>s>t</math> in model ({{EquationNote|4}}).<ref name=wang:16/><ref>{{Cite journal |last=Malfait and|first=Nicole |last2=Ramsay (2003)|first2=James O. "|date=2003 |title=The historical functional linear model" |url=https://onlinelibrary.wiley.com/doi/10.2307/3316063 ''|journal=Canadian Journal of Statistics''. '''|language=en |volume=31''' (|issue=2):115&ndash;128. [[Digital|pages=115–128 object identifier|doi]]:[http://doi.org/=10.2307/3316063 10.2307/3316063].|issn=1708-945X|url-access=subscription }}</ref>. A simpler version of the historical functional linear model is the functional concurrent model (see below).<br />
Adding multiple functional covariates, model ({{EquationNote|4}}) can be extended to
{{NumBlk|::|<math display="block">Y(t) = \beta_0(t) + \sum_{j=1}^p\int_{\mathcal{S}_j} \beta_j(s,t) X^c_j(s)\,ds + \epsilonvarepsilon(t),\ \text{for}\ t\in\mathcal{T},</math>|{{EquationRef|5}}}}
where for <math>j=1,\cdotsldots,p</math>, <math>X_j^c(\cdot)=X_j(\cdot) - \mathbb{E}(X_j(\cdot))</math> is a centered functional covariate with ___domain <math>\mathcal{S}_j</math>, and <math>\beta_j(\cdot,\cdot)</math> is the corresponding coefficient function with the same ___domain, respectively.<ref name=wang:16/>. In particular, taking <math>X_j(\cdot)</math> as a constant function yields a special case of model ({{EquationNote|5}})
<math display="block">Y(t) = \sum_{j=1}^p X_j \beta_j(t) + \epsilonvarepsilon(t),\ \text{for}\ t\in\mathcal{T},</math>
which is a FLM with functional responses and scalar covariates.<br />
 
==== Functional concurrent models ====
Assuming that <math>\mathcal{S} = \mathcal{T}</math>, another model, known as the functional concurrent model, sometimes also referred to as the varying-coefficient model, is of the form
{{NumBlk|::|<math display="block">Y(t) = \alpha_0(t) + \alpha(t)X(t)+\epsilonvarepsilon(t),\ \text{for}\ t\in\mathcal{T},</math>|{{EquationRef|6}}}}
where <math>\alpha_0</math> and <math>\alpha</math> are coefficient functions. Note that model ({{EquationNote|6}}) assumes the value of <math>Y</math> at time <math>t</math>, i.e., <math>Y(t)</math>, only depends on that of <math>X</math> at the same time, i.e., <math>X(t)</math>. Various estimation methods can be applied to model ({{EquationNote|6}}).<ref>{{Cite journal |last=Fan and|first=Jianqing |last2=Zhang (1999).|first2=Wenyang "|date= |title=Statistical estimation in varying coefficient models" |url=https://projecteuclid.org/journals/annals-of-statistics/volume-27/issue-5/Statistical-estimation-in-varying-coefficient-models/10.1214/aos/1017939139.full ''|journal=The Annals of Statistics''. '''|volume=27''' (|issue=5):1491&ndash;1518. [[Digital|pages=1491–1518 object identifier|doi]]:[http://doi.org/=10.1214/aos/1017939139 10.1214/aos/1017939139].|issn=0090-5364}}</ref><ref>{{Cite journal |last=Huang, |first=Jianhua Z. |last2=Wu and|first2=Colin O. |last3=Zhou (|first3=Lan |date=2004). "|title=Polynomial splineSpline estimationEstimation and inferenceInference for varyingVarying coefficientCoefficient modelsModels with longitudinalLongitudinal data".Data ''Biometrika''. '''14''' (3):763&ndash;788. http|url=https://www.jstor.org/stable/24307415. |journal=Statistica Sinica |volume=14 |issue=3 |pages=763–788 |issn=1017-0405}}</ref><ref>&#350;ent&uuml;rk{{Cite andjournal M&uuml;ller|last=Şentürk (|first=Damla |last2=Müller |first2=Hans-Georg |date=2010).-09-01 "|title=Functional varyingVarying coefficientCoefficient modelsModels for longitudinalLongitudinal data". ''JournalData of the American Statistical Association''. '''105''' (491):1256&ndash;1264. [[Digital object identifier|doi]]:[httpurl=https://doiwww.orgtandfonline.com/doi/abs/10.1198/jasa.2010.tm09228 |journal=Journal of the American Statistical Association |doi=10.1198/jasa.2010.tm09228]. |issn=0162-1459|url-access=subscription }}</ref>.<br />
Adding multiple functional covariates, model ({{EquationNote|6}}) can also be extended to
<math display="block">Y(t) = \alpha_0(t) + \sum_{j=1}^p\alpha_j(t)X_j(t)+\epsilonvarepsilon(t),\ \text{for}\ t\in\mathcal{T},</math>
where <math>X_1,\cdotsldots,X_p</math> are multiple functional covariates with ___domain <math>\mathcal{T}</math> and <math>\alpha_0,\alpha_1,\cdotsldots,\alpha_p</math> are the coefficient functions with the same ___domain.<ref name=wang:16/>
 
== Functional nonlinear models ==
=== Functional polynomial models ===
Functional polynomial models are an extension of the FLMs with scalar responses, analogous to extending linear regression to [[Polynomial regression|polynomial regression]]. For a scalar response <math>Y</math> and a functional covariate <math>X(\cdot)</math> with ___domain <math>\mathcal{T}</math>, the simplest example of functional polynomial models is functional quadratic regression<ref name="yao:10">Yao{{Cite andjournal M&uuml;ller|last=Yao (2010)|first=F. "Functional|last2=Muller quadratic regression"|first2=H. ''Biometrika''-G. '''97'''|date=2010-03-01 (1):49&ndash;64.|title=Functional [[Digitalquadratic objectregression identifier|doi]]:[httpurl=https://doiacademic.orgoup.com/biomet/article-lookup/doi/10.1093/biomet/asp069 |journal=Biometrika |language=en |volume=97 |issue=1 |pages=49–64 |doi=10.1093/biomet/asp069]. |issn=0006-3444|url-access=subscription }}</ref>
<math display="block">Y = \alpha + \int_\mathcal{T}\beta(t)X^c(t)\,dt + \int_\mathcal{T} \int_\mathcal{T} \gamma(s,t) X^c(s)X^c(t) dsdt\,ds\,dt + \epsilonvarepsilon,</math>
where <math>X^c(\cdot) = X(\cdot) - \mathbb{E}(X(\cdot))</math> is the centered functional covariate, <math>\alpha</math> is a scalar coefficient, <math>\beta(\cdot)</math> and <math>\gamma(\cdot,\cdot)</math> are coefficient functions with domains <math>\mathcal{T}</math> and <math>\mathcal{T}\times\mathcal{T}</math>, respectively, and <math>\epsilonvarepsilon</math> is a random error with mean zero and finite variance. By analogy to FLMs with scalar responses, estimation of functional polynomial models can be obtained through expanding both the centered covariate <math>X^c</math> and the coefficient functions <math>\beta</math> and <math>\gamma</math> in an orthonormal basis.<ref name=yao:10/>
 
=== Functional single and multiple index models ===
A functional multiple index model is given by
<math display="block">Y = g\left(\int_{\mathcal{T}} X^c(t) \beta_1(t)\,dt, \cdotsldots, \int_{\mathcal{T}} X^c(t) \beta_p(t)\,dt \right) + \epsilonvarepsilon.</math>
Taking <math>p=1</math> yields a functional single index model. However, for <math>p>1</math>, this model is problematic due to [[Curse of dimensionality|curse of dimensionality]]. With <math>p>1</math> and relatively small sample sizes, the estimator given by this model often has large variance.<ref name="chen:11">{{Cite journal |last=Chen, |first=Dong |last2=Hall and|first2=Peter M&uuml;ller|last3=Müller (2011).|first3=Hans-Georg "|date= |title=Single and multiple index functional regression models with nonparametric link" |url=https://projecteuclid.org/journals/annals-of-statistics/volume-39/issue-3/Single-and-multiple-index-functional-regression-models-with-nonparametric-link/10.1214/11-AOS882.full ''|journal=The Annals of Statistics''. '''|volume=39''' (|issue=3):1720&ndash;1747. [[Digital|pages=1720–1747 object identifier|doi]]:[http://doi.org/=10.1214/11-AOS882 10.1214/11|issn=0090-AOS882]5364|arxiv=1211.5018 }}</ref>. An alternative <math>p</math>-component functional multiple index model can be expressed as
<math display="block">Y = g_1\left(\int_{\mathcal{T}} X^c(t) \beta_1(t)\,dt\right)+ \cdots+ g_p\left(\int_{\mathcal{T}} X^c(t) \beta_p(t)\,dt \right) + \epsilonvarepsilon.</math>
Estimation methods for functional single and multiple index models are available.<ref name=chen:11/><ref>{{Cite journal |last=Jiang and|first=Ci-Ren |last2=Wang (2011).|first2=Jane-Ling "|date= |title=Functional single index models for longitudinal data". '''39''' (1):362&ndash;388. [[Digital object identifier|doi]]:[httpurl=https://doiprojecteuclid.org/journals/annals-of-statistics/volume-39/issue-1/Functional-single-index-models-for-longitudinal-data/10.1214/10-AOS845.full |journal=The Annals of Statistics |volume=39 |issue=1 |pages=362–388 |doi=10.1214/10-AOS845] |issn=0090-5364|arxiv=1103.1726 }}</ref>.
 
=== Functional additive models (FAMs) ===
Line 59:
One form of FAMs is obtained by replacing the linear function of <math>x_k</math>, i.e., <math>\beta_k x_k</math>, by a general smooth function <math>f_k</math>,
<math display="block">\mathbb{E}(Y|X)=\mathbb{E}(Y) + \sum_{k=1}^\infty f_k(x_k),</math>
where <math>f_k</math> satisfies <math>\mathbb{E}(f_k(x_k))=0</math> for <math>k\in\mathbb{N}</math>.<ref name=wang:16/><ref>M&uuml;ller{{Cite andjournal |last=Müller |first=Hans-Georg |last2=Yao (|first2=Fang |date=2008).-12-01 "|title=Functional additiveAdditive models"Models |url=https://www.tandfonline.com/doi/abs/10.1198/016214508000000751 ''|journal=Journal of the American Statistical Association''. '''103''' (484):1534&ndash;1544. [[Digital object identifier|doi]]:[http://doi.org/=10.1198/016214508000000751 10.1198/016214508000000751].|issn=0162-1459|url-access=subscription }}</ref>. Another form of FAMs consists of a sequence of time-additive models:
<math display="block">\mathbb{E}(Y|X(t_1),\cdotsldots,X(t_p))=\sum_{j=1}^p f_j(X(t_j)),</math>
where <math>\{t_1,\cdotsldots,t_p\}</math> is a dense grid on <math>\mathcal{T}</math> with increasing size <math>p\in\mathbb{N}</math>, and <math>f_j(x) = g(t_j,x)</math> with <math>g</math> a smooth function, for <math>j=1,\cdotsldots,p</math><ref name=wang:16/><ref>{{Cite journal |last=Fan, |first=Yingying |last2=James and|first2=Gareth M. |last3=Radchenko (2015).|first3=Peter "|date= |title=Functional additive regression" |url=https://projecteuclid.org/journals/annals-of-statistics/volume-43/issue-5/Functional-additive-regression/10.1214/15-AOS1346.full ''|journal=The Annals of Statistics''. '''|volume=43''' (|issue=5):2296&ndash;2325. [[Digital object|pages=2296–2325 identifier|doi]]:[http://doi.org/=10.1214/15-AOS1346 10.1214/15|issn=0090-AOS1346]5364|arxiv=1510.04064 }}</ref>
 
== Extensions ==
A direct extension of FLMs with scalar responses shown in model ({{EquationNote|2}}) is to add a link function to create a [[Generalized functional linear model|generalized functional linear model]] (GFLM) by analogy to extending [[Linear regression|linear regression]] to [[Generalized linear model|generalized linear regression]] (GLM), of which the three components are:
# Linear predictor <math>\eta = \beta_0 + \int_{\mathcal{T}} X^c(t)\beta(t)\,dt</math>;
# [[Variance function]] <math>\text{Var}(Y|X) = V(\mu)</math>, where <math>\mu = \mathbb{E}(Y|X)</math> is the [[Conditional expectation|conditional mean]];
# Link function <math>g</math> connecting the conditional mean and the linear predictor through <math>\mu=g(\eta)</math>.
 
== See also ==
* [[Functional data analysis|]]
* [[Functional dataprincipal component analysis]]
* [[Karhunen&ndash;Loève theorem]]
* [[Functional principal component analysis|Functional principal component analysis]]
* [[Generalized functional linear model|Generalized functional linear model]]
* [[Karhunen&ndash;Lo&egrave;ve_theorem|Karhunen&ndash;Lo&egrave;ve theorem]]
* [[Stochastic processes|Stochastic processes]]
* [[Generalized functional linear model|Generalized functional linear model]]
* [[Stochastic processes|Stochastic processes]]
 
== References ==
Line 80:
 
[[Category:Regression analysis]]
 
== Functional regression ==