Content deleted Content added
m Fixing or ISBN error or other ISBN error using AutoEd |
m Open access bot: url-access updated in citation with #oabot. |
||
(26 intermediate revisions by 11 users not shown) | |||
Line 1:
{{Short description|Type of regression analysis}}
'''Functional regression''' is a version of [[regression analysis]] when [[Dependent and independent variables|responses]] or [[Dependent and independent variables|covariates]] include [[Functional data analysis|functional data]]. Functional regression models can be classified into four types depending on whether the responses or covariates are functional or scalar: (i) scalar responses with functional covariates, (ii) functional responses with scalar covariates, (iii) functional responses with functional covariates, and (iv) scalar or functional responses with functional and scalar covariates. In addition, functional regression models can be [[Linear regression|linear]], partially linear, or [[Nonlinear regression|nonlinear]]. In particular, functional polynomial models, functional [[
__TOC__
Line 11 ⟶ 12:
Functional linear models with scalar responses can be obtained by replacing the scalar covariates <math>X</math> and the coefficient vector <math>\beta</math> in model ({{EquationNote|1}}) by a centered functional covariate <math>X^c(\cdot) = X(\cdot) - \mathbb{E}(X(\cdot))</math> and a coefficient function <math>\beta = \beta(\cdot)</math> with [[Domain of a function|___domain]] <math>\mathcal{T}</math>, respectively, and replacing the inner product in Euclidean space by that in [[Hilbert space]] [[Lp space|<math>L^2</math>]],
{{NumBlk|::|<math display="block">Y = \beta_0 + \langle X^c, \beta\rangle +\varepsilon = \beta_0 + \int_\mathcal{T} X^c(t)\beta(t)\,dt + \varepsilon,</math>|{{EquationRef|2}}}}
where <math>\langle \cdot, \cdot \rangle</math> here denotes the inner product in <math>L^2</math>. One approach to estimating <math>\beta_0</math> and <math>\beta(\cdot)</math> is to expand the centered covariate <math>X^c(\cdot)</math> and the coefficient function <math>\beta(\cdot)</math> in the same [[Basis function|functional basis]], for example, [[B-spline]] basis or the eigenbasis used in the [[Karhunen–
<math display="block">Y = \beta_0 + \sum_{k=1}^\infty \beta_k x_k +\varepsilon.</math>
For implementation, regularization is needed and can be done through truncation, <math>L^2</math> penalization or <math>L^1</math> penalization.<ref name=morr:15>
Adding multiple functional and scalar covariates, model ({{EquationNote|2}}) can be extended to
{{NumBlk|::|<math display="block">Y = \sum_{k=1}^q Z_k\alpha_k + \sum_{j=1}^p \int_{\mathcal{T}_j} X_j^c(t) \beta_j(t) \,dt + \varepsilon,</math>|{{EquationRef|3}}}}
where <math>Z_1,\ldots,Z_q</math> are scalar covariates with <math>Z_1=1</math>, <math>\alpha_1,\ldots,\alpha_q</math> are regression coefficients for <math>Z_1,\ldots,Z_q</math>, respectively, <math>X^c_j</math> is a centered functional covariate given by <math>X_j^c(\cdot) = X_j(\cdot) - \mathbb{E}(X_j(\cdot))</math>, <math>\beta_j</math> is regression coefficient function for <math>X_j^c(\cdot)</math>, and <math>\mathcal{T}_j</math> is the ___domain of <math>X_j</math> and <math>\beta_j</math>, for <math>j=1,\ldots,p</math>. However, due to the parametric component <math>\alpha</math>, the estimation methods for model ({{EquationNote|2}}) cannot be used in this case<ref name=wang:16>
=== Functional linear models with functional responses ===
For a functional response <math>Y(\cdot)</math> with ___domain <math>\mathcal{T}</math> and a functional covariate <math>X(\cdot)</math> with ___domain <math>\mathcal{S}</math>, two FLMs regressing <math>Y(\cdot)</math> on <math>X(\cdot)</math> have been considered.<ref name=wang:16/><ref>Ramsay and [[Bernard Silverman|Silverman]] (2005). ''Functional data analysis'', 2nd ed., New York
{{NumBlk|::|<math display="block">Y(t) = \beta_0(t) + \int_{\mathcal{S}} \beta(s,t) X^c(s)\,ds + \varepsilon(t),\ \text{for}\ t\in\mathcal{T},</math>|{{EquationRef|4}}}}
where <math>X^c(\cdot) = X(\cdot) - \mathbb{E}(X(\cdot))</math> is still the centered functional covariate, <math>\beta_0(\cdot)</math> and <math>\beta(\cdot,\cdot)</math> are coefficient functions, and <math>\varepsilon(\cdot)</math> is usually assumed to be a random process with mean zero and finite variance. In this case, at any given time <math>t\in\mathcal{T}</math>, the value of <math>Y</math>, i.e., <math>Y(t)</math>, depends on the entire trajectory of <math>X</math>. Model ({{EquationNote|4}}), for any given time <math>t</math>, is an extension of [[multivariate linear regression]] with the inner product in Euclidean space replaced by that in <math>L^2</math>. An estimating equation motivated by multivariate linear regression is
<math display="block">r_{XY} = R_{XX}\beta, \text{ for } \beta\in L^2(\mathcal{S}\times\mathcal{S}),</math>
where <math>r_{XY}(s,t) = \text{cov}(X(s),Y(t))</math>, <math>R_{XX}: L^2(\mathcal{S}\times\mathcal{S}) \rightarrow L^2(\mathcal{S}\times\mathcal{T})</math> is defined as <math>(R_{XX}\beta)(s,t) = \int_\mathcal{S} r_{XX}(s,w)\beta(w,t)dw</math> with <math>r_{XX}(s,w) = \text{cov}(X(s),X(w))</math> for <math>s,w\in\mathcal{S}</math>.<ref name=wang:16/>
When <math>X</math> and <math>Y</math> are concurrently observed, i.e., <math>\mathcal{S}=\mathcal{T}</math>,<ref>{{Cite journal |last=Grenander
Adding multiple functional covariates, model ({{EquationNote|4}}) can be extended to
{{NumBlk|::|<math display="block">Y(t) = \beta_0(t) + \sum_{j=1}^p\int_{\mathcal{S}_j} \beta_j(s,t) X^c_j(s)\,ds + \varepsilon(t),\ \text{for}\ t\in\mathcal{T},</math>|{{EquationRef|5}}}}
where for <math>j=1,\ldots,p</math>, <math>X_j^c(\cdot)=X_j(\cdot) - \mathbb{E}(X_j(\cdot))</math> is a centered functional covariate with ___domain <math>\mathcal{S}_j</math>, and <math>\beta_j(\cdot,\cdot)</math> is the corresponding coefficient function with the same ___domain, respectively.<ref name=wang:16/>
<math display="block">Y(t) = \sum_{j=1}^p X_j \beta_j(t) + \varepsilon(t),\ \text{for}\ t\in\mathcal{T},</math>
which is a FLM with functional responses and scalar covariates.
==== Functional concurrent models ====
Assuming that <math>\mathcal{S} = \mathcal{T}</math>, another model, known as the functional concurrent model, sometimes also referred to as the varying-coefficient model, is of the form
{{NumBlk|::|<math display="block">Y(t) = \alpha_0(t) + \alpha(t)X(t)+\varepsilon(t),\ \text{for}\ t\in\mathcal{T},</math>|{{EquationRef|6}}}}
where <math>\alpha_0</math> and <math>\alpha</math> are coefficient functions. Note that model ({{EquationNote|6}}) assumes the value of <math>Y</math> at time <math>t</math>, i.e., <math>Y(t)</math>, only depends on that of <math>X</math> at the same time, i.e., <math>X(t)</math>. Various estimation methods can be applied to model ({{EquationNote|6}}).<ref>{{Cite journal |last=Fan
Adding multiple functional covariates, model ({{EquationNote|6}}) can also be extended to
<math display="block">Y(t) = \alpha_0(t) + \sum_{j=1}^p\alpha_j(t)X_j(t)+\varepsilon(t),\ \text{for}\ t\in\mathcal{T},</math>
Line 43:
== Functional nonlinear models ==
=== Functional polynomial models ===
Functional polynomial models are an extension of the FLMs with scalar responses, analogous to extending linear regression to [[polynomial regression]]. For a scalar response <math>Y</math> and a functional covariate <math>X(\cdot)</math> with ___domain <math>\mathcal{T}</math>, the simplest example of functional polynomial models is functional quadratic regression<ref name="yao:10">
<math display="block">Y = \alpha + \int_\mathcal{T}\beta(t)X^c(t)\,dt + \int_\mathcal{T} \int_\mathcal{T} \gamma(s,t) X^c(s)X^c(t) \,ds\,dt + \varepsilon,</math>
where <math>X^c(\cdot) = X(\cdot) - \mathbb{E}(X(\cdot))</math> is the centered functional covariate, <math>\alpha</math> is a scalar coefficient, <math>\beta(\cdot)</math> and <math>\gamma(\cdot,\cdot)</math> are coefficient functions with domains <math>\mathcal{T}</math> and <math>\mathcal{T}\times\mathcal{T}</math>, respectively, and <math>\varepsilon</math> is a random error with mean zero and finite variance. By analogy to FLMs with scalar responses, estimation of functional polynomial models can be obtained through expanding both the centered covariate <math>X^c</math> and the coefficient functions <math>\beta</math> and <math>\gamma</math> in an orthonormal basis.<ref name=yao:10/>
Line 50:
A functional multiple index model is given by
<math display="block">Y = g\left(\int_{\mathcal{T}} X^c(t) \beta_1(t)\,dt, \ldots, \int_{\mathcal{T}} X^c(t) \beta_p(t)\,dt \right) + \varepsilon.</math>
Taking <math>p=1</math> yields a functional single index model. However, for <math>p>1</math>, this model is problematic due to [[curse of dimensionality]]. With <math>p>1</math> and relatively small sample sizes, the estimator given by this model often has large variance.<ref name="chen:11">{{Cite journal |last=Chen
<math display="block">Y = g_1\left(\int_{\mathcal{T}} X^c(t) \beta_1(t)\,dt\right)+ \cdots+ g_p\left(\int_{\mathcal{T}} X^c(t) \beta_p(t)\,dt \right) + \varepsilon.</math>
Estimation methods for functional single and multiple index models are available.<ref name=chen:11/><ref>{{Cite journal |last=Jiang
=== Functional additive models (FAMs) ===
Line 59:
One form of FAMs is obtained by replacing the linear function of <math>x_k</math>, i.e., <math>\beta_k x_k</math>, by a general smooth function <math>f_k</math>,
<math display="block">\mathbb{E}(Y|X)=\mathbb{E}(Y) + \sum_{k=1}^\infty f_k(x_k),</math>
where <math>f_k</math> satisfies <math>\mathbb{E}(f_k(x_k))=0</math> for <math>k\in\mathbb{N}</math>.<ref name=wang:16/><ref>
<math display="block">\mathbb{E}(Y|X(t_1),\ldots,X(t_p))=\sum_{j=1}^p f_j(X(t_j)),</math>
where <math>\{t_1,\ldots,t_p\}</math> is a dense grid on <math>\mathcal{T}</math> with increasing size <math>p\in\mathbb{N}</math>, and <math>f_j(x) = g(t_j,x)</math> with <math>g</math> a smooth function, for <math>j=1,\ldots,p</math><ref name=wang:16/><ref>{{Cite journal |last=Fan
== Extensions ==
Line 72:
* [[Functional data analysis]]
* [[Functional principal component analysis]]
* [[Karhunen–
* [[Generalized functional linear model]]
* [[Stochastic processes]]
|