Learning vector quantization: Difference between revisions

Content deleted Content added
m Overview: cite repair;
OAbot (talk | contribs)
m Open access bot: url-access updated in citation with #oabot.
 
(16 intermediate revisions by 5 users not shown)
Line 1:
In [[computer science]], '''learning vector quantization''' ('''LVQ''') is a [[prototype|prototype-based]] [[supervised learning|supervised]] [[Statistical classification|classification]] [[algorithm]]. LVQ is the supervised counterpart of [[vector quantization]] systems. LVQ can be understood as a special case of an [[artificial neural network]], more precisely, it applies a [[winner-take-all (computing)|winner-take-all]] [[Hebbian learning]]-based approach. It is a precursor to [[self-organizing map]]s (SOM) and related to [[neural gas]] and the [[k-nearest neighbor algorithm]] (k-NN). LVQ was invented by [[Teuvo Kohonen]].<ref>T. Kohonen. Self-Organizing Maps. Springer, Berlin, 1997.</ref>
 
== Overview ==
LVQ can be understood as a special case of an [[artificial neural network]], more precisely, it applies a [[winner-take-all (computing)|winner-take-all]] [[Hebbian learning]]-based approach. It is a precursor to [[self-organizing map]]s (SOM) and related to [[neural gas]], and to the [[k-nearest neighbor algorithm]] (k-NN). LVQ was invented by [[Teuvo Kohonen]].<ref>T. Kohonen. Self-Organizing Maps. Springer, Berlin, 1997.</ref>
 
== Definition ==
An LVQ system is represented by prototypes <math>W=(w(i),...,w(n))</math> which are defined in the [[feature space]] of observed data. In winner-take-all training algorithms one determines, for each data point, the prototype which is closest to the input according to a given distance measure. The position of this so-called winner prototype is then adapted, i.e. the winner is moved closer if it correctly classifies the data point or moved away if it classifies the data point incorrectly.
 
Line 14 ⟶ 12:
 
==Algorithm==
The algorithms are presented as in.<ref>{{Citation |last=Kohonen |first=Teuvo |title=Learning Vector Quantization |date=2001 |work=Self-Organizing Maps |volume=30 |pages=245–261 |url=http://link.springer.com/10.1007/978-3-642-56927-2_6 |place=Berlin, Heidelberg |publisher=Springer Berlin Heidelberg |doi=10.1007/978-3-642-56927-2_6 |isbn=978-3-540-67921-9|url-access=subscription }}</ref>
Below follows an informal description.<br>
 
The algorithm consists of three basic steps. The algorithm's input is:
Set up:
* how many neurons the system will have <math>M</math> (in the simplest case it is equal to the number of classes)
 
* what weight each neuron has <math>\vec{w_i}</math> for <math>i = 0,1,...,M - 1 </math>
* Let the correspondingdata labelbe denoted by <math>c_ix_i \in \R^D</math>, toand eachtheir neuroncorresponding labels by <math>y_i \in \vec{w_i}1, 2, \dots, C\}</math>.
* howThe fastcomplete thedataset neurons are learningis <math>\{(x_i, y_i)\eta }_{i=1}^N</math>.
* The set of code vectors is <math>w_j \in \R^D</math>.
* and an input list <math> L </math> containing all the vectors of which the labels are known already (training set).
* The learning rate at iteration step <math>t</math> is denoted by <math>\alpha_t</math>.
* The hyperparameters <math>w</math> and <math>\epsilon</math> are used by LVQ2 and LVQ3. The original paper suggests <math>\epsilon \in [0.1, 0.5]</math> and <math>w \in [0.2, 0.3]</math>.
 
=== LVQ1 ===
Initialize several code vectors per label. Iterate until convergence criteria is reached.
 
# Sample a datum <math>x_i</math>, and find out the code vector <math>w_j</math>, such that <math>x_i</math> falls within the [[Voronoi diagram|Voronoi cell]] of <math>w_j</math>.
# If its label <math>y_i</math> is the same as that of <math>w_j</math>, then <math>w_j \leftarrow w_j + \alpha_t(x_i - w_j)</math>, otherwise, <math>w_j \leftarrow w_j - \alpha_t(x_i - w_j)</math>.
 
=== LVQ2 ===
LVQ2 is the same as LVQ3, but with this sentence removed: "If <math>w_j</math> and <math>w_k</math> and <math>x_i</math> have the same class, then <math>w_j \leftarrow w_j - \alpha_t(x_i - w_j)</math> and <math>w_k \leftarrow w_k + \alpha_t(x_i - w_k)</math>.". If <math>w_j</math> and <math>w_k</math> and <math>x_i</math> have the same class, then nothing happens.
 
=== LVQ3 ===
The algorithm's flow is:
[[File:Apollonian_circles.svg|thumb|Some Apollonian circles. Every blue circle intersects every red circle at a right angle. Every red circle passes through the two points ''{{mvar|C, D}}'', and every blue circle separates the two points.]]
# For next input <math>\vec{x}</math> (with label <math>y</math>) in <math> L </math> find the closest neuron <math>\vec{w_m}</math>, <br>i.e. <math>d(\vec{x},\vec{w_m}) = \min\limits_i {d(\vec{x},\vec{w_i})} </math>, where <math>\, d</math> is the metric used ( [[Euclidean distance|Euclidean]], etc. ).
Initialize several code vectors per label. Iterate until convergence criteria is reached.
# Update <math>\vec{w_m}</math>. A better explanation is get <math>\vec{w_m}</math> closer to the input <math>\vec{x}</math>, if <math>\vec{x}</math> and <math>\vec{w_m}</math> belong to the same label and get them further apart if they don't. <br><math> \vec{w_m} \gets \vec{w_m} + \eta \cdot \left( \vec{x} - \vec{w_m} \right) </math> if <math> c_m = y</math> (closer together) <br> or <math> \vec{w_m} \gets \vec{w_m} - \eta \cdot \left( \vec{x} - \vec{w_m} \right) </math> if <math> c_m \neq y</math> (further apart).
# While there are vectors left in <math> L </math> go to step 1, else terminate.
 
Note:# Sample a datum <math>\vec{w_i}x_i</math>, and find out two code vectors <math>\vec{x}w_j, w_k</math> are [[vector space|vectors]] inclosest featureto spaceit.
# Let <math>d_j := \|x_i - w_j\|, d_k := \|x_i - w_k\|</math>.
# If <math>\min \left(\frac{d_j}{d_k}, \frac{d_k}{d_j}\right)>s </math>, where <math>s=\frac{1-w}{1+w}</math>, then
#* If <math>w_j</math> and <math>x_i</math> have the same class, and <math>w_k</math> and <math>x_i</math> have different classes, then <math>w_j \leftarrow w_j + \alpha_t(x_i - w_j)</math> and <math>w_k \leftarrow w_k - \alpha_t(x_i - w_k)</math>.
#* If <math>w_k</math> and <math>x_i</math> have the same class, and <math>w_j</math> and <math>x_i</math> have different classes, then <math>w_j \leftarrow w_j - \alpha_t(x_i - w_j)</math> and <math>w_k \leftarrow w_k + \alpha_t(x_i - w_k)</math>.
#* If <math>w_j</math> and <math>w_k</math> and <math>x_i</math> have the same class, then <math>w_j \leftarrow w_j - \epsilon\alpha_t(x_i - w_j)</math> and <math>w_k \leftarrow w_k + \epsilon\alpha_t(x_i - w_k)</math>.
#* If <math>w_k</math> and <math>x_i</math> have different classes, and <math>w_j</math> and <math>x_i</math> have different classes, then the original paper simply does not explain what happens in this case, but presumably nothing happens in this case.
# Otherwise, skip.
Note that condition <math>\min \left(\frac{d_j}{d_k}, \frac{d_k}{d_j}\right)>s </math>, where <math>s=\frac{1-w}{1+w}</math>, precisely means that the point <math>x_i</math> falls between two [[Apollonian circles|Apollonian spheres]].
 
== References ==
Line 33 ⟶ 49:
 
== Further reading ==
* {{cite journal |last1=Somervuo |first1=Panu |last2=Kohonen |first2=Teuvo |date=1999 |title=Self-organizing maps and learning vector quantization for feature sequences |journal=Neural Processing Letters |volume=10 |issue=2 |pages=151–159 |doi=10.1023/A:1018741720065}}
* [http://www.cis.hut.fi/panus/papers/dtwsom.pdf Self-Organizing Maps and Learning Vector Quantization for Feature Sequences, Somervuo and Kohonen. 2004] (pdf)
* {{Cite journal |last=Nova |first=David |last2=Estévez |first2=Pablo A. |date=2014-09-01 |title=A review of learning vector quantization classifiers |url=https://link.springer.com/article/10.1007/s00521-013-1535-3 |journal=Neural Computing and Applications |language=en |volume=25 |issue=3 |pages=511–524 |doi=10.1007/s00521-013-1535-3 |issn=1433-3058|arxiv=1509.07093 }}
 
== External links ==