Content deleted Content added
m v2.04b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation) |
m Open access bot: url-access updated in citation with #oabot. |
||
(13 intermediate revisions by 7 users not shown) | |||
Line 1:
In [[cognitive neuroscience]], '''visual modularity''' is an organizational concept concerning how [[Visual perception|vision]] works. The way in which the [[primate]] [[visual system]] operates is currently under intense scientific scrutiny. One dominant thesis is that different properties of the visual world ([[color]], [[Motion (physics)|motion]], [[shape|form]] and so forth) require different computational solutions which are implemented in anatomically/functionally distinct regions that operate independently – that is, in a modular fashion.<ref name="calpar1">{{cite
==Motion processing==
[[Akinetopsia]], a term coined by Semir Zeki,<ref>{{Cite journal|last=ZEKI|first=S.
{| class="wikitable"
Line 12:
| [[Physiology]] (single cell recording)
| Cells directionally and speed selective in MT/V5
| <ref name=zeki1>{{cite journal|last=Zeki|first=SM|title=Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey|journal=The Journal of Physiology|date=Feb 1974|volume=236|issue=3|pages=549–73|pmid=4207129|pmc=1350849|doi=10.1113/jphysiol.1974.sp010452}}</ref><ref name=vanessen1>{{cite journal|last=Van Essen|first=D. C.|author2=Maunsell, J. H. R. |author3=Bixby, J. L. |title=The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization|journal=The Journal of Comparative Neurology|date=1 July 1981|volume=199|issue=3|pages=293–326|doi=10.1002/cne.901990302|pmid=7263951|s2cid=19578153 }}</ref><ref name=maunsell>{{cite journal|last=Maunsell|first=JH|author2=Van Essen, DC|title=Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation|journal=Journal of Neurophysiology|date=May 1983|volume=49|issue=5|pages=1127–47|pmid=6864242|doi=10.1152/jn.1983.49.5.1127}}</ref><ref name=felleman>{{cite journal|last=Felleman|first=DJ|author2=Kaas, JH |title=Receptive-field properties of neurons in middle temporal visual area (MT) of owl monkeys|journal=Journal of Neurophysiology|date=Sep 1984|volume=52|issue=3|pages=488–513|pmid=6481441|doi=10.1152/jn.1984.52.3.488}}</ref>
|-
| [[Neuroimaging]]
Line 20:
| Electrical-stimulation & perceptual
| Following electrical stimulation of V5/MT cells perceptual decisions are biased towards the stimulated neuron's direction preference
| <ref name=salzman>{{cite journal|last=Salzman|first=CD|author2=Murasugi, CM |author3=Britten, KH |author4= Newsome, WT |title=Microstimulation in visual area MT: effects on direction discrimination performance|journal=The Journal of Neuroscience|date=Jun 1992|volume=12|issue=6|pages=2331–55|pmid=1607944|doi=10.1523/JNEUROSCI.12-06-02331.1992|pmc=6575906|doi-access=free}}</ref>
|-
| [[Magnetic]]-stimulation
| Motion perception is also briefly impaired in humans by a strong magnetic pulse over the corresponding scalp region to hMT+
| <ref name=hotson>{{cite journal|last=Hotson|first=John|author2=Braun, Doris |author3=Herzberg, William |author4= Boman, Duane |title=Transcranial magnetic stimulation of extrastriate cortex degrades human motion direction discrimination|journal=Vision Research|year=1994|volume=34|issue=16|pages=2115–2123|doi=10.1016/0042-6989(94)90321-2|pmid=7941409|s2cid=25382683 }}</ref><ref name=beckers>{{cite journal|last=Beckers|first=G.|author2=Zeki, S. |title=The consequences of inactivating areas V1 and V5 on visual motion perception|journal=Brain|date=1 January 1995|volume=118|issue=1|pages=49–60|doi=10.1093/brain/118.1.49|pmid=7895014}}</ref><ref name=walsh>{{cite journal|last=Walsh|first=V|author2=Cowey, A |title=Magnetic stimulation studies of visual cognition|journal=Trends in Cognitive Sciences|date=Mar 1, 1998|volume=2|issue=3|pages=103–10|doi=10.1016/S1364-6613(98)01134-6|pmid=21227086|s2cid=16473802}}</ref>
|-
| [[Psychophysics]]
| [[Perceptual asynchrony]] among motion, color and orientation.
| <ref name=moutoussis1>{{cite journal|last=Moutoussis|first=K.|author2=Zeki, S. |title=A direct demonstration of perceptual asynchrony in vision|journal=Proceedings of the Royal Society B: Biological Sciences|date=22 March 1997|volume=264|issue=1380|pages=393–399|doi=10.1098/rspb.1997.0056|pmid=9107055|pmc=1688275}}</ref><ref name=viviani>{{cite journal|last=Viviani|first=Paolo|author2=Aymoz, Christelle |title=Colour, form, and movement are not perceived simultaneously|journal=Vision Research|date=1 October 2001|volume=41|issue=22|pages=2909–2918|doi=10.1016/S0042-6989(01)00160-2|pmid=11701183|doi-access=}}</ref>
|}
Line 43:
| [[Neuroimaging]]
| Biological motion activated superior temporal sulcus
| <ref name=grossman>{{cite journal|last=Grossman|first=E|author2=Donnelly, M |author3=Price, R |author4=Pickens, D |author5=Morgan, V |author6=Neighbor, G |author7= Blake, R |title=Brain areas involved in perception of biological motion|journal=Journal of Cognitive Neuroscience|date=Sep 2000|volume=12|issue=5|pages=711–20|doi=10.1162/089892900562417|pmid=11054914|citeseerx=10.1.1.138.1319|s2cid=15679202}}</ref>
|-
| [[Neuroimaging]]
| [[Tool]] use activated middle temporal gyrus and inferior temporal sulcus
| <ref name=beauchamp1>{{cite journal|last=Beauchamp|first=MS|author2=Lee, KE |author3=Haxby, JV |author4= Martin, A |title=FMRI responses to video and point-light displays of moving humans and manipulable objects|journal=Journal of Cognitive Neuroscience|date=Oct 1, 2003|volume=15|issue=7|pages=991–1001|doi=10.1162/089892903770007380|pmid=14614810|s2cid=120898 }}</ref>
|-
| [[Neuropsychology]]
Line 56:
== Color processing ==
Similar converging evidence suggests modularity for color. Beginning with Gowers’ finding<ref name=gowers>{{cite book|last=Gowers|first=W.|title=A manual of diseases of the brain|year=1888|publisher=J & A Churchill}}</ref> that damage to the fusiform/lingual [[gyri]] in [[occipitotemporal cortex]] correlates with a loss in color perception ([[achromatopsia]]), the notion of a "color centre" in the primate brain has had growing support.<ref name=meadows>{{cite journal|last=Meadows|first=JC|title=Disturbed perception of colours associated with localized cerebral lesions|journal=Brain
{| class="wikitable"
Line 64:
|-
| [[Wavelength]] sensitive cells in V1 and V2
| <ref name=livingstone>{{cite journal|last=Livingstone|first=MS|author2=Hubel, DH |title=Anatomy and physiology of a color system in the primate visual cortex|journal=The Journal of Neuroscience|date=Jan 1984|volume=4|issue=1|pages=309–56|pmid=6198495|doi=10.1523/JNEUROSCI.04-01-00309.1984|pmc=6564760|doi-access=free}}</ref><ref name=deyoe>{{cite journal|last=DeYoe|first=EA|author2=Van Essen, DC|title=Segregation of efferent connections and receptive field properties in visual area V2 of the macaque|journal=Nature|date=Sep 5–11, 1985|volume=317|issue=6032|pages=58–61|doi=10.1038/317058a0|pmid=2412132|bibcode=1985Natur.317...58D |s2cid=4249013 }}</ref>
|-
| anterior parts of the inferior temporal cortex
| <ref name=zeki4>{{cite journal|last=Zeki|first=S|author2=Marini, L |title=Three cortical stages of colour processing in the human brain|journal=Brain|year=1998|volume=121|issue=9|pages=1669–1685|doi=10.1093/brain/121.9.1669|pmid=9762956|doi-access=free}}</ref><ref name=beauchamp2>{{cite journal|last=Beauchamp|first=MS|author2=Haxby, JV |author3=Rosen, AC |author4= DeYoe, EA |title=A functional MRI case study of acquired cerebral dyschromatopsia|journal=Neuropsychologia|year=2000|volume=38|issue=8|pages=1170–9|doi=10.1016/S0028-3932(00)00017-8|pmid=10838151|s2cid=10372901 }}</ref>
|-
| posterior parts of the superior temporal sulcus (PITd)
| <ref name=conway>{{cite journal|last=Conway|first=B. R.|author2=Tsao, DY |title=Color Architecture in Alert Macaque Cortex Revealed by fMRI|journal=Cerebral Cortex|date=22 December 2005|volume=16|issue=11|pages=1604–1613|doi=10.1093/cercor/bhj099|pmid=16400160|pmc=9100861 |doi-access=free}}</ref>
|-
| Area in or near TEO
Line 79:
|-
| Link between [[Visual perception|vision]], [[attention]] and [[cognition]]
| <ref name=chelazzi>{{cite journal|last=Chelazzi|first=L|author2=Miller, EK |author3=Duncan, J |author4= Desimone, R |title=Responses of neurons in macaque area V4 during memory-guided visual search|journal=Cerebral Cortex|date=Aug 2001|volume=11|issue=8|pages=761–72|doi=10.1093/cercor/11.8.761|pmid=11459766|doi-access=
|}
== Form processing ==
Another clinical case that would a priori suggest a module for modularity in visual processing is [[visual agnosia]]. The well studied patient DF is unable to recognize or discriminate objects<ref name=mishkin>{{cite journal|last=Mishkin|first=Mortimer|author2=Ungerleider, Leslie G. |author3=Macko, Kathleen A. |title=Object vision and spatial vision: two cortical pathways|journal=Trends in Neurosciences|year=1983|volume=6|pages=414–417|doi=10.1016/0166-2236(83)90190-X|s2cid=15565609 }}</ref> owing to damage in areas of the lateral occipital cortex although she can see scenes without problem – she can literally see the forest but not the trees.<ref name=steeves>{{cite journal|last=Steeves|first=Jennifer K.E.|author2=Culham, Jody C. |author3=Duchaine, Bradley C. |author4=Pratesi, Cristiana Cavina |author5=Valyear, Kenneth F. |author6=Schindler, Igor |author7=Humphrey, G. Keith |author8=Milner, A. David |author9= Goodale, Melvyn A. |title=The fusiform face area is not sufficient for face recognition: Evidence from a patient with dense prosopagnosia and no occipital face area|journal=Neuropsychologia|year=2006|volume=44|issue=4|pages=594–609|doi=10.1016/j.neuropsychologia.2005.06.013|pmid=16125741|s2cid=460887 |url=http://dro.dur.ac.uk/6186/1/6186.pdf}}</ref> [[Neuroimaging]] of intact individuals reveals strong occipito-temporal activation during object presentation and greater activation still for object recognition.<ref name=grillspector>{{cite journal|last=Grill-Spector|first=Kalanit|author2=Ungerleider, Leslie G. |author3=Macko, Kathleen A. |title=The neural basis of object perception|journal=Current Opinion in Neurobiology|year=2003|volume=13|issue=3|pages=
== Functional modularity ==
One of the first uses of the term "module" or "modularity" occurs in the influential book "[[Modularity of Mind]]" by philosopher [[Jerry Fodor]].<ref name=fodor>{{cite book|last=Fodor|first=Jerry A.|title=The modularity of mind : an essay on faculty psychology|year=1989|publisher=MIT Press|___location=Cambridge, Mass. [ u.a.]|isbn=978-0-262-56025-2|edition=6. printing.}}</ref> A detailed application of this idea to the case of vision was published by Pylyshyn (1999), who argued that there is a significant part of vision that is not responsive to beliefs and is "cognitively impenetrable".<ref name=pylyshyn>{{cite journal|last=Pylyshyn|first=Z|title=Is vision continuous with cognition? The case for cognitive impenetrability of visual perception|journal=The Behavioral and Brain Sciences|date=Jun 1999|volume=22|issue=3|pages=341–65; discussion 366–423|pmid=11301517|doi=10.1017/s0140525x99002022|s2cid=9482993}}</ref>
Much of the confusion concerning modularity exists in neuroscience because there is evidence for specific areas (e.g. V4 or V5/hMT+) and the concomitant behavioral deficits following brain insult (thus taken as evidence for modularity). In addition, evidence shows other areas are involved and that these areas subserve processing of multiple properties (e.g. V1<ref name=leventhal>{{cite journal|last=Leventhal|first=AG|author2=Thompson, KG |author3=Liu, D |author4=Zhou, Y |author5= Ault, SJ |title=Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex|journal=The Journal of Neuroscience|date=Mar 1995|volume=15|issue=3 Pt 1|pages=1808–18|pmid=7891136|doi=10.1523/JNEUROSCI.15-03-01808.1995|pmc=6578154|doi-access=free}}</ref>) (thus taken as evidence against modularity). That these streams have the same implementation in early visual areas, like V1, is not inconsistent with a modular viewpoint: to adopt the canonical analogy in cognition, it is possible for different software to run on the same hardware. A consideration of [[psychophysics]] and neuropsychological data would suggest support for this. For example, psychophysics has shown that percepts for different properties are realized asynchronously.<ref name=moutoussis1/><ref name=viviani/> In addition, although achromats experience other cognitive defects<ref name=gegenfurtner>{{cite journal|last=Gegenfurtner|first=Karl R.|title=Sensory systems: Cortical mechanisms of colour vision|journal=Nature Reviews Neuroscience|year=2003|volume=4|issue=7|pages=563–572|doi=10.1038/nrn1138|pmid=12838331|s2cid=11505913 }}</ref> they do not have motion deficits when their lesion is restricted to V4, or total loss of form perception.<ref name=zeki3>{{cite journal|last=Zeki|first=S|title=The Ferrier Lecture 1995 behind the seen: the functional specialization of the brain in space and time|journal=Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences|date=Jun 29, 2005|volume=360|issue=1458|pages=1145–83|doi=10.1098/rstb.2005.1666|pmid=16147515|pmc=1609195}}</ref> Relatedly, Zihl and colleagues' [[akinetopsia]] patient shows no deficit to color or object perception (although deriving depth and structure from motion is problematic, see above) and object agnostics do not have damaged motion or color perception, making the three disorders triply [[dissociable]].<ref name="zihl2"/> Taken together this evidence suggests that even though distinct properties may employ the same early visual areas they are functionally independent. Furthermore, that the intensity of subjective perceptual experience (e.g. color) correlates with activity in these specific areas (e.g. V4),<ref name="barzek2"/> the recent evidence that [[synesthesia|synaesthetes]] show V4 activation during the perceptual experience of color, as well as the fact that damage to these areas results in concomitant behavioral deficits (the processing may be occurring but perceivers do not have access to the information) are all evidence for visual modularity.
==See also==
|