Content deleted Content added
No edit summary |
No edit summary |
||
(44 intermediate revisions by 30 users not shown) | |||
Line 1:
{{short description|Multilinear extension of principal component analysis}}
'''Multilinear
* '''linear tensor models''',
* '''multilinear tensor models''', such as '''multilinear principal component analysis (MPCA
<ref name="Vasilescu2002b">M. A. O. Vasilescu (2002) [http://www.media.mit.edu/~maov/motionsignatures/hms_icpr02_corrected.pdf "Human Motion Signatures: Analysis, Synthesis, Recognition," Proceedings of International Conference on Pattern Recognition (ICPR 2002), Vol. 3, Quebec City, Canada, Aug, 2002, 456-460.]</ref>▼
(CVPR 2001, ICPR 2002), face recognition - [[TensorFaces]],▼
(ECCV 2002, CVPR 2003, etc.) and computer graphics -- [[TensorTextures]]<ref name="Vasilescu2004"/>(Siggraph 2004).▼
Multilinear PCA may be applied to compute the causal factors of data formation, or as signal processing tool on data tensors whose individual observation have either been vectorized,<ref name="Vasilescu2002b"/><ref name="Vasilescu2002a">M.A.O. Vasilescu, [[Demetri Terzopoulos|D. Terzopoulos]] (2002) [http://www.media.mit.edu/~maov/tensorfaces/eccv02_corrected.pdf "Multilinear Analysis of Image Ensembles: TensorFaces," Proc. 7th European Conference on Computer Vision (ECCV'02), Copenhagen, Denmark, May, 2002, in Computer Vision – ECCV 2002, Lecture Notes in Computer Science, Vol. 2350, A. Heyden et al. (Eds.), Springer-Verlag, Berlin, 2002, 447–460. ]</ref><ref name="Vasilescu2003">M.A.O. Vasilescu, D. Terzopoulos (2003) [http://www.media.mit.edu/~maov/tensorfaces/cvpr03.pdf "Multilinear Subspace Analysis for Image Ensembles,'' M. A. O. Vasilescu, D. Terzopoulos, Proc. Computer Vision and Pattern Recognition Conf. (CVPR '03), Vol.2, Madison, WI, June, 2003, 93–99.]</ref><ref name="Vasilescu2004">M.A.O. Vasilescu, D. Terzopoulos (2004) [http://www.media.mit.edu/~maov/tensortextures/Vasilescu_siggraph04.pdf "TensorTextures: Multilinear Image-Based Rendering", M. A. O. Vasilescu and D. Terzopoulos, Proc. ACM SIGGRAPH 2004 Conference Los Angeles, CA, August, 2004, in Computer Graphics Proceedings, Annual Conference Series, 2004, 336–342. ]</ref> or whose observations are treated as a collection of column/row observations, an "observation as a matrix", and concatenated into a data tensor. The latter approach is suitable for compression and reducing redundancy in the rows, columns and fibers that are unrelated to the causal factors of data formation.
▲Historically, MPCA has been referred to as "M-mode PCA", a terminology which was coined by Peter Kroonenberg in 1980.<ref name="Kroonenberg1980"/> In 2005, [[M. Alex O. Vasilescu|Vasilescu]] and [[Demetri Terzopoulos|Terzopoulos]] introduced the Multilinear PCA<ref name="MPCA-MICA2005">M. A. O. Vasilescu, D. Terzopoulos (2005) [http://www.media.mit.edu/~maov/mica/mica05.pdf "Multilinear Independent Component Analysis"], "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, June 2005, vol.1, 547-553."</ref> terminology as a way to better differentiate between linear and multilinear tensor decomposition, as well as, to better differentiate between the work<ref name="Vasilescu2002b"/><ref name="Vasilescu2002a"/><ref name="Vasilescu2003"/><ref name="Vasilescu2004"/> that computed 2nd order statistics associated with each data tensor mode(axis), and subsequent work on Multilinear Independent Component Analysis<ref name="MPCA-MICA2005"/> that computed higher order statistics associated with each tensor mode/axis.
Vasilescu and Terzopoulos in their paper "[[TensorFaces]]"<ref name=Vasilescu2002a/><ref name="Vasilescu2003"/> introduced the [[HOSVD| '''M-mode SVD''']] algorithm which are algorithms misidentified in the literature as the '''HOSVD'''<ref name=DeLathauwer2000b>{{cite journal | last1 = Lathauwer | first1 = L. D. | last2 = Moor | first2 = B. D. | last3 = Vandewalle | first3 = J. | year = 2000 | title = On the best rank-1 and rank-(R1, R2, ..., RN ) approximation of higher-order tensors | url = http://portal.acm.org/citation.cfm?id=354405 | journal = SIAM Journal on Matrix Analysis and Applications | volume = 21 | issue = 4| pages = 1324–1342 | doi = 10.1137/s0895479898346995 | url-access = subscription }}</ref><ref name="DeLathauwer2000a">{{cite journal | last1 = Lathauwer | first1 = L.D. | last2 = Moor | first2 = B.D. | last3 = Vandewalle | first3 = J. | year = 2000 | title = A multilinear singular value decomposition | url = http://portal.acm.org/citation.cfm?id=354398 | journal = SIAM Journal on Matrix Analysis and Applications | volume = 21 | issue = 4| pages = 1253–1278 | doi = 10.1137/s0895479896305696 | url-access = subscription }}</ref>
or the '''Tucker''' which employ the power method or gradient descent, respectively.
▲Vasilescu and Terzopoulos framed the data analysis, recognition and synthesis problems as multilinear tensor problems. Data is viewed as the compositional consequence of several causal factors, that are well suited for multi-modal tensor factor analysis. The power of the tensor framework was showcased by analyzing human motion joint angles, facial images or textures in the following papers: Human Motion Signatures<ref name="Vasilescu2002b">M.
▲(CVPR 2001, ICPR 2002), face recognition
▲(ECCV 2002, CVPR 2003, etc.) and computer graphics
== The algorithm ==
The MPCA solution follows the alternating least square (ALS) approach.
== Feature selection ==
MPCA features: Supervised MPCA
== Extensions ==
Various
*Robust MPCA (RMPCA)
*Multi-Tensor Factorization, that also finds the number of components automatically (MTF)<ref>{{Cite journal|last=Khan|first=Suleiman A.|last2=Leppäaho|first2=Eemeli|last3=Kaski|first3=Samuel|date=2016-06-10|title=Bayesian multi-tensor factorization|journal=Machine Learning|language=en|volume=105|issue=2|pages=233–253|doi=10.1007/s10994-016-5563-y|issn=0885-6125|arxiv=1412.4679}}</ref>
▲*Robust MPCA (RMPCA) <ref>K. Inoue, K. Hara, K. Urahama, "Robust multilinear principal component analysis", Proc. IEEE Conference on Computer Vision, 2009, pp. 591–597.</ref>
* '''Matlab code''': [http://www.mathworks.com/matlabcentral/fileexchange/26168 MPCA].▼
* '''Matlab code''': [http://www.mathworks.com/matlabcentral/fileexchange/35432 UMPCA (including data)].▼
==References==
{{Reflist}}
== External links ==
▲*
* ''R code:'' [http://research.cs.aalto.fi/pml/software/mtf/ MTF]
[[Category:Dimension reduction]]
|