Content deleted Content added
Submod. section |
Tags: Mobile edit Mobile web edit Advanced mobile edit |
||
(95 intermediate revisions by 42 users not shown) | |||
Line 1:
{{Short description|Generalization of binary functions}}
In [[mathematics]] and [[optimization]], a '''pseudo-Boolean function''' is a [[function (mathematics)|function]] of the form
:<math>f: \mathbf{B}^n \
where {{math|1='''B'''
==Representations==
Any pseudo-Boolean function can be written uniquely as a [[multi-linear]] polynomial:<ref>{{cite journal |last1=Hammer |first1=P.L. |last2=Rosenberg |first2=I. |last3=Rudeanu |first3=S.|date=1963 |title=On the determination of the minima of pseudo-Boolean functions |language=ro |journal=Studii și cercetări matematice |issue=14 |pages=359–364 |issn=0039-4068}}</ref><ref>{{cite book |last1=Hammer |first1=Peter L. |last2=Rudeanu |first2=Sergiu |year=1968 |title=Boolean Methods in Operations Research and Related Areas |publisher=Springer |isbn=978-3-642-85825-3}}</ref>
:<math>f(\boldsymbol{x}) = a + \sum_i a_ix_i + \sum_{i<j}a_{ij}x_ix_j + \sum_{i<j<k}a_{ijk}x_ix_jx_k + \ldots</math>
The '''degree''' of the pseudo-Boolean function is simply the degree of the [[polynomial]] in this representation.
In many settings (e.g., in [[Analysis of Boolean functions|Fourier analysis of pseudo-Boolean functions]]), a pseudo-Boolean function is viewed as a function <math>f</math> that maps <math>\{-1,1\}^n</math> to <math>\mathbb{R}</math>. Again in this case we can uniquely write <math>f</math> as a multi-linear polynomial:
<math> f(x)= \sum_{I\subseteq [n]}\hat{f}(I)\prod_{i\in I}x_i, </math> where <math>\hat{f}(I)</math> are Fourier coefficients of <math>f</math> and <math>[n]=\{1,...,n\}</math>.
==Optimization==
Minimizing (or, equivalently, maximizing) a pseudo-Boolean function is [[NP-
===Submodularity===
The [[submodular set function]]s can be viewed as a special class of pseudo-Boolean functions, which is equivalent to the condition
:<math>f(\boldsymbol{x}) + f(\boldsymbol{y}) \ge f(\boldsymbol{x} \wedge \boldsymbol{y}) + f(\boldsymbol{x} \vee \boldsymbol{y}), \; \forall \boldsymbol{x}, \boldsymbol{y}\in \mathbf{B}^n\,.</math>
This is an important class of pseudo-boolean functions, because they can be [[Submodular set function#Submodular set function minimization|minimized in polynomial time]]. Note that minimization of a submodular function is a polynomially solvable problem independent on the presentation form, for e.g. pesudo-Boolean polynomials, opposite to maximization of a submodular function which is NP-hard, Alexander Schrijver (2000).
===Roof Duality===
If ''f'' is a quadratic polynomial, a concept called ''roof duality'' can be used to obtain a lower bound for its minimum value.<ref name=
===
If the degree of ''f'' is greater than 2, one can always employ ''reductions'' to obtain an equivalent quadratic problem with additional variables.
:<math>\displaystyle
There are other possibilities, for example,
:<math>
Different reductions lead to different results. Take for example the following [[Cubic function|cubic polynomial]]:<ref name=Kahl2011>{{cite conference |last1=Kahl |first1=F. |last2=Strandmark |first2=P. |year=2011|title=Generalized Roof Duality for Pseudo-Boolean Optimization |conference=[[International Conference on Computer Vision]] |url=http://www.maths.lth.se/vision/publdb/reports/pdf/kahl-strandmark-iccv-11.pdf}}</ref>
:<math>
Using the first reduction followed by roof duality, we obtain a lower bound of
===Polynomial Compression Algorithms===
Consider a pseudo-Boolean function <math> f </math> as a mapping from <math>\{-1,1\}^n</math> to <math>\mathbb{R}</math>. Then <math>f(x)= \sum_{I\subseteq [n]}\hat{f}(I)\prod_{i\in I}x_i.</math> Assume that each coefficient <math>\hat{f}(I)</math> is integral. Then for an integer <math>k</math> the problem P of deciding whether <math> f(x) </math> is more or equal to <math>k</math> is NP-complete. It is proved in <ref name=Crowston2011>{{cite journal |last1=Crowston |first1=R. |last2=Fellows |first2=M. |last3=Gutin |first3=G. |last4=Jones |first4=M. |last5=Rosamond |first5=F. |last6=Thomasse |first6=S. |last7=Yeo |first7=A. |year=2011 |title=Simultaneously Satisfying Linear Equations Over GF(2): MaxLin2 and Max-r-Lin2 Parameterized Above Average. |journal=Proc. Of FSTTCS 2011 |arxiv=1104.1135 |bibcode=2011arXiv1104.1135C}}</ref> that in polynomial time we can either solve P or reduce the number of variables to <math> O(k^2\log k).</math> Let <math>r</math> be the degree of the above multi-linear polynomial for <math>f</math>. Then <ref name=Crowston2011/> proved that in polynomial time we can either solve P or reduce the number of variables to <math>r(k-1)</math>.
==See also==
*[[Boolean function]]
*[[Quadratic pseudo-Boolean optimization]]
==References==▼
* {{cite journal|last=Ishsikawa|title=Transformation of general binary MRF minimization to the first order case|journal=IEEE Trans. Pattern Analysis and Machine Intelligence|year=2011|volume=33|number=6|pages=1234-1249}}▼
* {{cite journal|last=Rother|coauthors=Kolmogorov, Lempitsky, Szummer|title=Optimizing Binary MRFs via Extended Roof Duality|journal=International Conference on Computer Vision and Pattern Recognition|year=2007|url=http://research.microsoft.com/pubs/67978/cvpr07-QPBOpi.pdf}}▼
==Notes==
<references />
▲==References==
▲* {{cite journal |last=
* {{cite journal |last=O'Donnell |first=Ryan | author-link = Ryan O'Donnell (computer scientist)|year=2008 |title=Some topics in analysis of Boolean functions |journal=ECCC |issn=1433-8092 |url=https://eccc.weizmann.ac.il/report/2008/055/}}
▲* {{cite
* {{cite journal |last=Schrijver |first=Alexander |date=November 2000 |title=A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time |journal=Journal of Combinatorial Theory |doi=10.1006/jctb.2000.1989 |volume=80 |issue=2 |pages=346–355|doi-access=free }}
[[Category:Mathematical optimization]]
|