Content deleted Content added
No edit summary |
article James Edward Campbell has been deleted (Wikipedia:Articles for deletion/James Edward Campbell) |
||
(One intermediate revision by one other user not shown) | |||
Line 1:
{{Short description|Statistical sampling technique}}
'''Latin hypercube sampling''' ('''LHS''') is a [[statistics|statistical]] method for generating a near-random sample of parameter values from a [[multidimensional distribution]]. The [[Sampling (statistics)|sampling method]] is often used to construct [[computer experiment]]s or for [[Monte Carlo integration]].<ref name = "C3M"/>
LHS was described by Michael McKay of Los Alamos National Laboratory in 1979.<ref name = "C3M">{{cite journal
Line 17:
| jstor = 1268522
}}
</ref> An equivalent technique was independently proposed by [[:lv:Vilnis Eglājs|Vilnis Eglājs]] in 1977.<ref>{{cite journal|last=Eglajs|first=V.|author2=Audze P. |title=New approach to the design of multifactor experiments|journal=Problems of Dynamics and Strengths|year=1977|series=35|pages=104–107|publisher=Zinatne Publishing House|___location=Riga|language=Russian}}</ref> It was further elaborated by [[Ronald L. Iman]] and coauthors in 1981.<ref>{{cite journal |last=Iman |first=R.L. |author2=Helton, J.C.
In the context of statistical sampling, a square grid containing sample positions is a [[Latin square]] if (and only if) there is only one sample in each row and each column. A '''Latin [[hypercube]]''' is the generalisation of this concept to an arbitrary number of dimensions, whereby each sample is the only one in each axis-aligned [[hyperplane]] containing it.<ref name = "C3M"/>
When sampling a function of <math>N</math> variables, the range of each variable is divided into <math>M</math> equally probable intervals. <math>M</math> sample points are then placed to satisfy the Latin hypercube requirements; this forces the number of divisions, <math>M</math>, to be equal for each variable. This sampling scheme does not require more samples for more dimensions (variables); this independence is one of the main advantages of this sampling scheme. Another advantage is that random samples can be taken one at a time, remembering which samples were taken so far.
|