Stochastic block model: Difference between revisions

Content deleted Content added
m some wording
OAbot (talk | contribs)
m Open access bot: url-access=subscription updated in citation with #oabot.
 
(4 intermediate revisions by 4 users not shown)
Line 1:
{{Short description|Concept in network science}}
{{Network science}}
 
Line 70 ⟶ 71:
| author1 = A. J. Uppal |author2 = J. Choi |author3 = T. B. Rolinger |author4 = H. Howie Huang
|title = 2021 IEEE High Performance Extreme Computing Conference (HPEC) |chapter = Faster Stochastic Block Partition Using Aggressive Initial Merging, Compressed Representation, and Parallelism Control | date = 2021 |pages = 1–7 |doi = 10.1109/HPEC49654.2021.9622836|isbn = 978-1-6654-2369-4 |s2cid = 244780210 }}</ref>
base algorithm, matching its quality of clusters while being multiple orders of magnitude faster.<ref>{{cite journalbook
| author1 = David Zhuzhunashvili |author2 = Andrew Knyazev
|title journal= 2017 IEEE High Performance Extreme Computing Conference (HPEC)
| titlechapter = Preconditioned spectral clustering for stochastic block partition streaming graph challenge (Preliminary version at arXiv.)
| journal=2017 IEEE High Performance Extreme Computing Conference (HPEC)
| date = 2017 |pages = 1–6
|doi = 10.1109/HPEC.2017.8091045|arxiv = 1708.07481
|isbn = 978-1-5386-3472-1
|s2cid = 19781504
}}</ref>
Line 127 ⟶ 130:
title = Mixed membership stochastic blockmodels| journal = Journal of Machine Learning Research |arxiv = 0705.4485| date = May 2007 | volume = 9| pages = 1981–2014| pmid = 21701698| pmc = 3119541| bibcode = 2007arXiv0705.4485A}}</ref>
<ref name="fat19">{{cite arXiv| last = Fathi| first = Reza| title = Efficient Distributed Community Detection in the Stochastic Block Model|eprint= 1904.07494| date = April 2019 | class = cs.DC}}</ref>
<ref name="hol">{{cite journal |title=Stochastic blockmodels: First steps |journal=[[Social Networks]] |year=1983 |last1=Holland |first1=Paul W |last2=Laskey |first2=Kathryn Blackmond |last3=Leinhardt |first3=Samuel |volume=5 |issue=2 |pages=109–137 |issn=0378-8733 |doi=10.1016/0378-8733(83)90021-7 |s2cid=34098453 |url=https://doi.org/10.1016/0378-8733(83)90021-7 |accessdate=2021-06-16 |archive-date=2023-02-04 |archive-url=https://web.archive.org/web/20230204160405/https://www.sciencedirect.com/science/article/abs/pii/0378873383900217?via%3Dihub |url-status=live |url-access=subscription }}</ref>
<ref name="ker">{{cite journal |title=Stochastic blockmodels and community structure in networks |journal=Physical Review E |year=2011 |last1=Karrer |first1=Brian |last2=Newman |first2=Mark E J |volume=83 |issue=1 |page=016107 |doi=10.1103/PhysRevE.83.016107 |pmid=21405744 |url=https://link.aps.org/doi/10.1103/PhysRevE.83.016107 |accessdate=2021-06-16 |arxiv=1008.3926 |bibcode=2011PhRvE..83a6107K |s2cid=9068097 |archive-date=2023-02-04 |archive-url=https://web.archive.org/web/20230204160406/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.83.016107 |url-status=live }}</ref>
<ref name="pei">{{cite journal |title=Hierarchical block structures and high-resolution model selection in large networks |journal=Physical Review X |year=2014 |last=Peixoto |first=Tiago |volume=4 |issue=1 |page=011047 |doi=10.1103/PhysRevX.4.011047 |url=https://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.011047 |accessdate=2021-06-16 |arxiv=1310.4377 |bibcode=2014PhRvX...4a1047P |s2cid=5841379 |archive-date=2021-06-24 |archive-url=https://web.archive.org/web/20210624195430/https://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.011047 |url-status=live }}</ref>
}}
 
[[Category:Machine learning]]
[[Category:Random graphs]]
[[Category:Networks]]