Content deleted Content added
→Numerical computation: fixed non-standard expression for more natural language |
m Open access bot: url-access=subscription updated in citation with #oabot. |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1:
{{Short description|Matrix whose entries are all minors of another matrix}}
In [[linear algebra]], a branch of [[mathematics]], a ('''multiplicative''') '''compound matrix''' is a [[matrix (mathematics)|matrix]] whose entries are all [[minor (linear algebra)|minors]], of a given size, of another matrix.<ref>DeAlba, Luz M. ''Determinants and Eigenvalues'' in Hogben, Leslie (ed) ''Handbook of Linear Algebra'', 2nd edition, CRC Press, 2013, {{isbn|978-1-4665-0729-6}}, p. 4-4</ref><ref>Gantmacher, F. R., ''The Theory of Matrices'', volume I, Chelsea Publishing Company, 1959, {{isbn|978-0-8218-1376-8}}p. 20</ref><ref>Horn, Roger A. and Johnson, Charles R., ''Matrix Analysis'', 2nd edition, Cambridge University Press, 2013, {{isbn|978-0-521-54823-6}}, p. 21</ref><ref name=":0">{{Cite journal|last=Muldowney|first=James S.|date=1990|title=Compound matrices and ordinary differential equations|url=http://projecteuclid.org/euclid.rmjm/1181073047|journal=Rocky Mountain Journal of Mathematics|language=en|volume=20|issue=4|pages=857–872|doi=10.1216/rmjm/1181073047|issn=0035-7596|via=|doi-access=free}}</ref> Compound matrices are closely related to [[exterior algebra]]s,<ref>{{cite tech report|first=Boutin|last=D.L.|author2=R.F. Gleeson|author3=R.M. Williams|title=Wedge Theory / Compound Matrices: Properties and Applications.|institution=Office of Naval Research|url=https://apps.dtic.mil/sti/pdfs/ADA320264.pdf|archive-url=https://web.archive.org/web/20210116083905/https://apps.dtic.mil/sti/pdfs/ADA320264.pdf|url-status=live|archive-date=January 16, 2021|year=1996|number=NAWCADPAX–96-220-TR}}</ref> and their computation appears in a wide array of problems, such as in the analysis of nonlinear time-varying dynamical systems and generalizations of positive systems, cooperative systems and contracting systems.<ref name=":0" /><ref>{{Cite journal |last1=Bar-Shalom |first1=Eyal |last2=Dalin |first2=Omri |last3=Margaliot |first3=Michael |date=2023-03-15 |title=Compound matrices in systems and control theory: a tutorial |url=https://link.springer.com/10.1007/s00498-023-00351-8 |journal=Mathematics of Control, Signals, and Systems |volume=35 |issue=3 |pages=467–521 |language=en |doi=10.1007/s00498-023-00351-8 |arxiv=2204.00676 |bibcode=2023MCSS...35..467B |s2cid=247939832 |issn=0932-4194}}</ref>
== Definition ==
Let {{math|''A''}} be an {{math|''m'' × ''n''}} matrix with [[real number|real]] or [[complex number|complex]] entries.{{efn|The definition, and the purely algebraic part of the theory, of compound matrices requires only that the matrix have entries in a [[commutative ring]]. In this case, the matrix corresponds to a [[module homomorphism|homomorphism]] of [[finitely generated module|finitely generated]] [[free module]]s.}} If {{math|''I''}} is a [[subset]] of size {{math|''r''}} of {{math|{1, ..., ''m''<nowiki>}</nowiki>}} and {{math|''J''}} is a subset of size {{math|''s''}} of {{math|{1, ..., ''n''<nowiki>}</nowiki>}}, then the '''{{math|(''I'', ''J''
The '''''r''
In some applications of compound matrices, the precise ordering of the rows and columns is unimportant. For this reason, some authors do not specify how the rows and columns are to be ordered.<ref>Kung, Rota, and Yan, p. 305.</ref>
Line 12:
For example, consider the matrix
:<math>A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}.</math>
The rows are indexed by {{math|{1, 2, 3<nowiki>}</nowiki>}} and the columns by {{math|{1, 2, 3, 4<nowiki>}</nowiki>}}. Therefore, the rows of {{math|''C''<sub>2
:<math>\{1, 2\} < \{1, 3\} < \{2, 3\}</math>
and the columns are indexed by
Line 50:
Let {{math|''c''}} be a scalar, {{math|''A''}} be an {{math|''m'' × ''n''}} matrix, and {{math|''B''}} be an {{math|''n'' × ''p''}} matrix. For {{math|''k''}} a positive [[integer]], let {{math|''I''<sub>''k''</sub>}} denote the {{math|''k'' × ''k''}} [[identity matrix]]. The [[transpose]] of a matrix {{math|''M''}} will be written {{math|''M''{{i sup|T}}}}, and the [[conjugate transpose]] by {{math|''M''{{i sup|*}}}}. Then:<ref>Horn and Johnson, p. 22.</ref>
* {{math|1=''C''<sub>0
* {{math|1=''C''<sub>1</sub>(''A'') = ''A''}}.
* {{math|1=''C''<sub>''r'' </sub>(''cA'') = ''c''{{i sup|''r''}}''C''<sub>''r'' </sub>(''A'')}}.
Line 57:
* If {{math|1 ≤ ''r'' ≤ min(''m'', ''n'')}}, then {{math|1=''C''<sub>''r'' </sub>(''A''{{i sup|T}}) = ''C''<sub>''r'' </sub>(''A''){{i sup|T}}}}.
* If {{math|1 ≤ ''r'' ≤ min(''m'', ''n'')}}, then {{math|1=''C''<sub>''r'' </sub>(''A''<sup>*</sup>) = ''C''<sub>''r'' </sub>(''A'')<sup>*</sup>}}.
* {{math|1=''C''<sub>''r'' </sub>(''AB'') = ''C''<sub>''r'' </sub>(''A'')
Assume in addition that {{math|''A''}} is a [[square matrix]] of size {{math|''n''}}. Then:<ref>Horn and Johnson, pp. 22, 93, 147, 233.</ref>
* {{math|1=''C''<sub>''n''
* If {{math|''A''}} has one of the following properties, then so does {{math|''C''<sub>''r'' </sub>(''A'')}}:
** [[Upper triangular]],
Line 81:
{{see also|Exterior algebra}}
Give {{math|'''R'''<sup>''n''</sup>}} the [[canonical basis|standard coordinate basis]] {{math|'''e'''<sub>1</sub>, ..., '''e'''<sub>''n''</sub>}}. The {{math|''r''}}
:<math>\wedge^r \mathbf{R}^n</math>
whose [[basis (linear algebra)|basis]] consists of the formal symbols
Line 90:
Suppose that {{math|''A''}} is an {{math|''m'' × ''n''}} matrix. Then {{math|''A''}} corresponds to a [[linear transformation]]
:<math>A \colon \mathbf{R}^n \to \mathbf{R}^m.</math>
Taking the {{math|''r''}}
:<math>\wedge^r A \colon \wedge^r \mathbf{R}^n \to \wedge^r \mathbf{R}^m.</math>
The matrix corresponding to this linear transformation (with respect to the above bases of the exterior powers) is {{math|''C''<sub>''r'' </sub>(''A'')}}. Taking exterior powers is a [[functor]], which means that<ref>Joseph P.S. Kung, Gian-Carlo Rota, and [[Catherine Yan|Catherine H. Yan]], ''[[Combinatorics: The Rota Way]]'', Cambridge University Press, 2009, p. 306. {{isbn|9780521883894}}</ref>
Line 99:
{{see also|Adjugate matrix}}
Let {{math|''A''}} be an {{math|''n'' × ''n''}} matrix. Recall that its '''{{mvar|r}}
:<math>(-1)^{\sigma(I) + \sigma(J)} \det A_{J^c, I^c},</math>
where, for any set {{math|''K''}} of integers, {{math|''σ''(''K'')}} is the sum of the elements of {{math|''K''}}. The '''adjugate''' of {{math|''A''}} is its 1st higher adjugate and is denoted {{math|adj(''A'')}}. The generalized [[Laplace expansion]] formula implies
Line 113:
and let {{math|''J''}} denote the ''[[exchange matrix]]'':
:<math>J = \begin{pmatrix} & & 1 \\ & \cdots & \\ 1 & & \end{pmatrix}.</math>
Then '''Jacobi's theorem''' states that the {{math|''r''}}
:<math>\operatorname{adj}_r(A) = JC_{n-r}(SAS)^TJ.</math>
Line 129:
Compound and adjugate matrices appear when computing determinants of [[linear combination]]s of matrices. It is elementary to check that if {{math|''A''}} and {{math|''B''}} are {{math|''n'' × ''n''}} matrices then
:<math>\det(sA + tB) = C_n\!\left(\begin{bmatrix} sA & I_n \end{bmatrix}\right)C_n\!\left(\begin{bmatrix} I_n \\ tB \end{bmatrix}\right).</math>
It is also true that:<ref>{{Cite journal|last1=Prells|first1=Uwe|last2=Friswell|first2=Michael I.|last3=Garvey|first3=Seamus D.|date=2003-02-08|title=Use of geometric algebra: compound matrices and the determinant of the sum of two matrices|url=http://rspa.royalsocietypublishing.org/content/459/2030/273|journal=Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences|language=en|volume=459|issue=2030|pages=273–285|doi=10.1098/rspa.2002.1040|bibcode=2003RSPSA.459..273P |s2cid=73593788 |issn=1364-5021|url-access=subscription}}</ref><ref>Horn and Johnson, p. 29</ref>
:<math>\det(sA + tB) = \sum_{r=0}^n s^r t^{n-r} \operatorname{tr}(\operatorname{adj}_r(A)C_r(B)).</math>
This has the immediate consequence
|