Content deleted Content added
added short description, links Tags: Mobile edit Mobile app edit iOS app edit |
Link suggestions feature: 2 links added. |
||
(43 intermediate revisions by 14 users not shown) | |||
Line 1:
{{short description|Change of an electron between energy levels within an atom}}
[[File:Bohr-atom-electron-to-jump.svg|thumb|228x228px|An electron in a [[Bohr model]] atom, moving from [[Quantum number|quantum level]] {{math|1=''n'' = 3}} to {{math|1=''n'' = 2}} and releasing a [[photon]]. The energy of an electron is determined by its orbit around the atom, The n = 0 orbit, commonly referred to as the [[ground state]], has the lowest energy of all states in the system. ]]▼
▲[[File:Bohr-atom-electron-to-jump.svg|thumb|228x228px|An electron in a [[Bohr model]] atom, moving from [[Quantum number|quantum level]] {{math|1=''n'' = 3}} to {{math|1=''n'' = 2}} and releasing a [[photon]].]]
{{Use mdy dates|date=February 2016}}
In [[atomic physics]] and [[chemistry]], an '''atomic electron transition''' (also called an
Electrons can ''relax'' into states of lower energy by emitting [[electromagnetic radiation]] in the form of a photon. Electrons can also absorb passing photons, which ''excites'' the electron into a state of higher energy. The larger the energy separation between the electron's initial and final state, the shorter the photons' [[wavelength]].<ref name=":0"/>
== History ==
Danish physicist [[Niels Bohr]] first theorized that electrons can perform quantum jumps in 1913.<ref>{{Cite news|last=Gleick|first=James|date=1986-10-21|title=PHYSICISTS FINALLY GET TO SEE QUANTUM JUMP WITH OWN EYES|language=en-US|work=The New York Times|url=https://www.nytimes.com/1986/10/21/science/physicists-finally-get-to-see-quantum-jump-with-own-eyes.html|access-date=2021-12-06|issn=0362-4331}}</ref> Soon after, [[James Franck]] and [[Gustav Ludwig Hertz]] [[Franck–Hertz experiment|proved experimentally]] that atoms have quantized energy states.<ref>{{Cite web|title=Franck-Hertz experiment {{!}} physics {{!}} Britannica|url=https://www.britannica.com/science/Franck-Hertz-experiment|access-date=2021-12-06|website=www.britannica.com|language=en}}</ref>
The observability of quantum jumps was predicted by [[Hans Dehmelt]] in 1975, and they were first observed using [[Quadrupole ion trap|trapped ions]] of [[barium]] at [[University of Hamburg]] and [[Mercury (element)|mercury]] at [[NIST]] in 1986.<ref name=":0">{{cite journal|last1=Itano|first1=W. M.|last2=Bergquist|first2=J. C.|last3=Wineland|first3=D. J.|date=2015|title=Early observations of macroscopic quantum jumps in single atoms|url=http://tf.boulder.nist.gov/general/pdf/2723.pdf|journal=International Journal of Mass Spectrometry|volume=377|page=403|bibcode=2015IJMSp.377..403I|doi=10.1016/j.ijms.2014.07.005}}</ref>
== Theory ==
An atom interacts with the oscillating [[electric field]]:
{{NumBlk|:|<math> E(t) = |\textbf{E}_0| Re( e^{-i{\omega}t} \hat{\textbf{e}}_\mathrm{rad} )</math>|{{EquationRef|1}}}}
with amplitude <math>|\textbf{E}_0|</math>, angular frequency <math>\omega</math>, and polarization vector <math>\hat{\textbf{e}}_\mathrm{rad}</math>.<ref>{{Cite book|title=Atomic Physics|author=Foot, CJ|year=2004|
publisher=Oxford University Press|isbn=978-0-19-850696-6}}</ref> Note that the actual phase is <math> (\omega t - \textbf{k} \cdot \textbf{r}) </math>. However, in many cases, the variation of <math> \textbf{k} \cdot \textbf{r} </math> is small over the atom (or equivalently, the radiation wavelength is much greater than the size of an atom) and this term can be ignored. This is called the dipole approximation. The atom can also interact with the oscillating [[magnetic field]] produced by the radiation, although much more weakly.
The Hamiltonian for this interaction, analogous to the energy of a classical dipole in an electric field, is <math> H_I = e \textbf{r} \cdot \textbf{E}(t) </math>. The stimulated transition rate can be calculated using [[time-dependent perturbation theory]]; however, the result can be summarized using [[Fermi's golden rule]]:
<math display="block">
Rate \propto |eE_0|^2 \times | \lang 2 |
\textbf{r} \cdot \hat{\textbf{e}}_\mathrm{rad} |1 \rang |^2
</math>
The dipole matrix element can be decomposed into the product of the radial integral and the angular integral. The angular integral is zero unless the [[selection rules]] for the atomic transition are satisfied.
== Recent discoveries ==
|