Wolff algorithm: Difference between revisions

Content deleted Content added
EhSeuss (talk | contribs)
m References: parallell > parallel WP:TYPO
OAbot (talk | contribs)
m Open access bot: url-access=subscription updated in citation with #oabot.
 
(21 intermediate revisions by 18 users not shown)
Line 1:
The '''Wolff algorithm''',<ref>{{Cite journal|last=Wolff|first=Ulli|date=1989-01-23|title=Collective Monte Carlo Updating for Spin Systems|url=https://link.aps.org/doi/10.1103/PhysRevLett.62.361|journal=Physical Review Letters|volume=62|issue=4|pages=361–364|doi=10.1103/PhysRevLett.62.361|pmid=10040213|bibcode=1989PhRvL..62..361W |url-access=subscription}}</ref> named after [[Ulli Wolff]], is an [[algorithm]] for [[Monte Carlo simulation]] of the [[Ising model]] and [[Potts model]] in which the unit to be flipped is not a single spin (as in the [[Glauber dynamics|heat bath]] or [[Metropolis–Hastings algorithm|Metropolis algorithms]]) but a cluster of them. This cluster is defined as the set of connected spins sharing the same spin states, based on the [[Random cluster model|Fortuin-Kasteleyn representation]].
{{Orphan|date=March 2009}}
{{Merge|Swendsen-Wang algorithm|talk:Swendsen-Wang algorithm|date=March 2009}}
 
The '''Wolff algorithm''', namedis aftersimilar [[Ullito Wolff]], is anthe [[Swendsen–Wang algorithm]], forbut [[Montedifferent Carloin simulation]] ofthat the [[Isingformer model]]only inflips whichone anrandomly equal-spinchosen cluster iswith formedprobability around1, onewhile spin.the Thatlatter flip every cluster isindependently with thenprobability flipped1/2. TheIt Wolffis algorithmshown isnumerically anthat improvementflipping overonly one cluster decreases the [[Swendsen–Wang algorithmautocorrelation]] becausetime itof tendsthe to form biggerspin clustersstatistics.
 
The advantage of Wolff algorithm over other algorithms for magnetic spin simulations like single spin flip is that it allows non-local moves on the energy. One important consequence of this is that in some situations (e.g. ferromagnetic Ising model or fully frustrated Ising model), the scaling of the Multicanonic simulation is <math>N^2</math>, better than <math>N^{2+z}</math>, where z is the exponent associated with the critical slowing down phenomena.
 
==References==
{{Reflist}}
*{{citation | doi=10.1103/PhysRevLett.62.361 | title=Collective Monte Carlo Updating for Spin Systems | year=1989 | author=Wolff, Ulli | journal=Physical Review Letters | volume=62 | pages=361 }}
*{{citation | doi=10.11421103/S0129183195000150PhysRevLett.62.361 | title=ParallelCollective WolffMonte clusterCarlo algorithmsUpdating for Spin Systems | year=19951989 | author1author=BaeWolff, S.Ulli | author2journal=Ko,Physical S.H.Review Letters | author3volume=Coddington, P.D.62 | journalpages=International361–364 Journal| of Modern Physics Cpmid=10040213 | volumeissue=64 | pagesbibcode=197 1989PhRvL..62..361W}}
*{{citation | doi=10.11031142/PhysRevLett.69.3382S0129183195000150 | title=MonteParallel CarloWolff simulations:cluster Hidden errors from ‘‘good’’ random number generatorsalgorithms | year=19921995 | author1=FerrenbergBae, Alan MS. | author2=LandauKo, DS.PH. | author3=WongCoddington, YP.D. Joanna | journal=PhysicalInternational ReviewJournal Lettersof Modern Physics C | volume=696 | issue=2 | pages=3382197 |bibcode = 1995IJMPC...6..197B | citeseerx=10.1.1.138.1448 }}
*{{citation | doi=10.1103/PhysRevLett.69.3382 | title=Monte Carlo simulations: Hidden errors from ''good'' random number generators | year=1992 | author1=Ferrenberg, Alan M. | author2=Landau, D.P. | author3=Wong, Y. Joanna | journal=Physical Review Letters | volume=69 | pages=3382–3384 | pmid=10046804 | issue=23 | bibcode=1992PhRvL..69.3382F}}
 
==External links==
*[http://www.netlib.org/utk/lsi/pcwLSI/text/node292.html ''Cluster Algorithms''] at [[Netlib]]
*Implementation in Julia: https://github.com/cossio/SquareIsingModel.jl
 
[[Category:Monte Carlo methods]]
Line 16 ⟶ 19:
 
 
{{physicsstatisticalmechanics-stub}}