Sample complexity: Difference between revisions

Content deleted Content added
m top: clean up, typo(s) fixed: e.g, → e.g.,
 
(One intermediate revision by one other user not shown)
Line 16:
Let <math>X</math> be a space which we call the input space, and <math>Y</math> be a space which we call the output space, and let <math>Z</math> denote the product <math>X\times Y</math>. For example, in the setting of binary classification, <math>X</math> is typically a finite-dimensional vector space and <math>Y</math> is the set <math>\{-1,1\}</math>.
 
Fix a hypothesis space <math>\mathcal H</math> of functions <math>h\colon X\to Y</math>. A learning algorithm over <math>\mathcal H</math> is a computable map from <math>Z^*</math> to <math>\mathcal H</math>. In other words, it is an algorithm that takes as input a finite sequence of training samples and outputs a function from <math>X</math> to <math>Y</math>. Typical learning algorithms include [[empirical risk minimization]], without or with [[Tikhonov regularization]].
 
Fix a loss function <math>\mathcal{L}\colon Y\times Y\to\R_{\geq 0}</math>, for example, the square loss <math>\mathcal{L}(y, y') = (y - y')^2</math>, where <math>h(x) = y'</math>. For a given distribution <math>\rho</math> on <math>X\times Y</math>, the '''expected risk''' of a hypothesis (a function) <math>h\in\mathcal H</math> is
Line 28:
<math display="block">
\Pr_{\rho^n}[\mathcal E(h_n) - \mathcal E^*_\mathcal{H}\geq\varepsilon]<\delta.
</math>The '''sample complexity''' of <math>\mathcal{A}</math> is then the minimum <math>N</math> for which this holds, as a function of <math>\rho, \epsilon</math>, and <math>\delta</math>. We write the sample complexity as <math>N(\rho, \epsilon, \delta)</math> to emphasize that this value of <math>N</math> depends on <math>\rho, \epsilon</math>, and <math>\delta</math>. If <math>\mathcal{A}</math> is '''not consistent''', then we set <math>N(\rho,\epsilon,\delta)=\infty</math>. If there exists an algorithm for which <math>N(\rho,\epsilon,\delta)</math> is finite, then we say that the hypothesis space <math> \mathcal H</math> is '''learnable'''.
</math>
The '''sample complexity''' of <math>\mathcal{A}</math> is then the minimum <math>N</math> for which this holds, as a function of <math>\rho, \epsilon</math>, and <math>\delta</math>. We write the sample complexity as <math>N(\rho, \epsilon, \delta)</math> to emphasize that this value of <math>N</math> depends on <math>\rho, \epsilon</math>, and <math>\delta</math>. If <math>\mathcal{A}</math> is '''not consistent''', then we set <math>N(\rho,\epsilon,\delta)=\infty</math>. If there exists an algorithm for which <math>N(\rho,\epsilon,\delta)</math> is finite, then we say that the hypothesis space <math> \mathcal H</math> is '''learnable'''.
 
In others words, the sample complexity <math>N(\rho,\epsilon,\delta)</math> defines the rate of consistency of the algorithm: given a desired accuracy <math>\epsilon</math> and confidence <math>\delta</math>, one needs to sample <math>N(\rho,\epsilon,\delta)</math> data points to guarantee that the risk of the output function is within <math>\epsilon</math> of the best possible, with probability at least <math>1 - \delta</math> .<ref name="Rosasco">{{citation |last = Rosasco | first = Lorenzo | title = Consistency, Learnability, and Regularization | series = Lecture Notes for MIT Course 9.520. | year = 2014 }}</ref>
Line 80 ⟶ 79:
 
Suppose <math>\mathcal H</math> is a class of real-valued functions with range in <math>[0,T]</math>. Then, <math>\mathcal H</math> is <math>(\epsilon,\delta)</math>-PAC-learnable with a sample of size:
<ref name=mr15>{{cite book|first1=Martin|last1=Anthony|first2=Peter L.|last2=Bartlett|title=Neural Network Learning: Theoretical Foundations|year=2009|isbn=9780521118620}}</ref><ref>{{cite conference|title=On the Pseudo-Dimension of Nearly Optimal Auctions|year=2015|conference=NIPS|url=http://papers.nips.cc/paper/5766-on-the-pseudo-dimension-of-nearly-optimal-auctions|arxiv=1506.03684|last1=Morgenstern|first1=Jamie|author1-link=Jamie Morgenstern|last2=Roughgarden|first2=Tim|pages=136–144|publisher=Curran Associates}}</ref>
<math display="block">
N = O\bigg(T^2\frac{PD(\mathcal H)\ln{T\over \epsilon} + \ln{1\over \delta}}{\epsilon^2}\bigg)