Content deleted Content added
Rewording |
Citation bot (talk | contribs) Added isbn. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:CS1 maint: ignored ISBN errors | #UCB_Category 319/532 |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 8:
|total_width=360
|footer=Two views of the utility graph, also known as the Thomsen graph or <math>K_{3,3}</math>}}
The '''three utilities problem''', also known as '''water, gas and electricity''', is a [[mathematical puzzle]] that asks for non-crossing connections to be drawn between three houses and three utility companies on a [[Plane (geometry)|plane]]. When posing it in the early 20th century, [[Henry Dudeney]] wrote that it was already an old problem. It is an [[List of impossible puzzles|impossible puzzle]]: it is not possible to connect all nine lines without any of them crossing. Versions of the problem on nonplanar surfaces such as a [[torus]] or [[Möbius strip]], or that allow connections to pass through other houses or utilities, can be solved.
This puzzle can be formalized as a problem in [[topological graph theory]] by asking whether the [[complete bipartite graph]] <math>K_{3,3}</math>, with vertices representing the houses and utilities and edges representing their connections, has a [[graph embedding]] in the plane. The impossibility of the puzzle corresponds to the fact that <math>K_{3,3}</math> is not a [[planar graph]]. Multiple proofs of this impossibility are known, and form part of the proof of [[Kuratowski's theorem]] characterizing planar graphs by two forbidden subgraphs, one of which {{nowrap|is <math>K_{3,3}</math>.}} The question of minimizing the [[Crossing number (graph theory)|number of crossings]] in drawings of complete bipartite graphs is known as [[Turán's brick factory problem]], and for <math>K_{3,3}</math> the minimum number of crossings is one.
Line 264:
| title = Combinatorial Mathematics IV: Proceedings of the Fourth Australian Conference Held at the University of Adelaide August 27–29, 1975
| volume = 560
| isbn = 978-3-540-08053-4
| year = 1976}}</ref>
Line 296 ⟶ 297:
| year = 2009}}</ref>
<ref name=quarrelsome>{{citation|title=Mathematical Puzzles of Sam Loyd|first=Sam|last=Loyd|author-link=Sam Loyd|editor-first=Martin|editor-last=Gardner|editor-link=Martin Gardner|publisher=Dover Books|year=1959|isbn=((9780486204987))<!-- isbn ok, for later printing of same edition by same publisher -->|contribution=82: The Quarrelsome Neighbors|page=79|contribution-url=https://books.google.com/books?id=QCy6DzgqcI4C&pg=PA79}}</ref>
<ref name=streinu>{{citation
|