Elliptical polarization: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Add: s2cid. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_webform 176/3850
Mathematical description: Maybe this is clearer if moved inline.
 
(7 intermediate revisions by 6 users not shown)
Line 1:
{{Short description|Polarization of electromagnetic radiation}}
{{multiple|
{{more footnotes|date=November 2018}}
Line 12 ⟶ 13:
The [[Classical physics|classical]] [[sinusoidal]] plane wave solution of the [[electromagnetic wave equation]] for the [[Electric field|electric]] and [[Magnetic field|magnetic]] fields is ([[Gaussian units]])
 
:<math> \mathbf{E} ( \mathbf{r} , t ) = \midleft| \mathbf{E} \midright| \mathrm{Re} \left \{ |\psi\rangle \exp \left [ i \left ( kz-\omega t \right ) \right ] \right \} </math>
 
:<math> \mathbf{B} ( \mathbf{r} , t ) = \hat { \mathbf{z} } \times \mathbf{E} ( \mathbf{r} , t ) ,</math>
 
where <math>k</math> is the [[wavenumber]], <math display=inline> \omega = c k</math> is the [[angular frequency]] of the wave propagating in the +z direction, and <math> c </math> is the [[speed of light]].
for the magnetic field, where k is the [[wavenumber]],
 
:Here <math>| \omega_mathbf{ E}^{ } = c k|</math> is the [[amplitude]] of the field and
 
is the [[angular frequency]] of the wave propagating in the +z direction, and <math> c </math> is the [[speed of light]].
 
Here <math>\mid \mathbf{E} \mid</math> is the [[amplitude]] of the field and
 
:<math> |\psi\rangle \ \stackrel{\mathrm{def}}{=}\ \begin{pmatrix} \psi_x \\ \psi_y \end{pmatrix} = \begin{pmatrix} \cos\theta \exp \left ( i \alpha_x \right ) \\ \sin\theta \exp \left ( i \alpha_y \right ) \end{pmatrix} </math>
Line 29 ⟶ 26:
 
==Polarization ellipse==
[[File:Polarisation ellipse.svg|250px|right]]At a fixed point in space (or for fixed z), the electric vector <math> \mathbf{E} </math> traces out an ellipse in the x-y plane. The semi-major and semi-minor axes of the ellipse have lengths A and B, respectively, that are given by
:<math> A=|\mathbf{E}|\sqrt{\frac{1+\sqrt{1-\sin^2(2\theta)\sin^2\beta}}{2}}</math>
and