Content deleted Content added
GreenC bot (talk | contribs) Add {{reflist-talk}} to #Applications (via reftalk bot) |
m Add assessment for importance |
||
(11 intermediate revisions by 8 users not shown) | |||
Line 1:
{{WikiProject
{{WikiProject Economics|importance=mid}}
{{WikiProject Game theory}}
}}
==Applications==
The first application given is not an application of the stable marriage problem, since a hospital may hire more than one graduate at a time. For this the college admissions algorithm of Gale and Shapley is required. An important application of the stable marriage algorithm is matching organ donors to organ recipients. Many lives have been saved by using this algorithm, also devised by Gale and Shapley.<ref>''Mariages Stable'', Donald E Knuth.</ref><ref>Gale, D.; Shapley, L. S. (1962). "College Admissions and the Stability of Marriage". American Mathematical Monthly 69: 9–14. doi:10.2307/2312726. JSTOR 2312726.</ref>
Line 162 ⟶ 164:
Cheers.—[[User:InternetArchiveBot|'''<span style="color:darkgrey;font-family:monospace">InternetArchiveBot</span>''']] <span style="color:green;font-family:Rockwell">([[User talk:InternetArchiveBot|Report bug]])</span> 06:23, 15 December 2017 (UTC)
== Other Algorithms? ==
The Gale-Shapley method seems pretty lopsided. Aren't there other algorithms known, particularly ones that treat both groups symmetrically? It doesn't seem too difficult to think of one. For instance, one method would be: (a) sort all pairs of uncommitted individuals in decreasing order of mutual preference (e.g. one if A has a #m on their list, and a has A as #n on their list, then the total preference might be m + n or some other monotonic symmetric function of m and n); and set up a tie-breaking convention to handle ties (or select amongst ties randomly); (b) find the first stable pair on the list and commit the individuals to each other; (c) repeat (a) for the remaining uncommitted individuals. By construction, the result is stable; and the method is symmetric, subject to the symmetry of the tie-breaking convention. <!-- Template:Unsigned IP --><small class="autosigned">— Preceding [[Wikipedia:Signatures|unsigned]] comment added by [[Special:Contributions/2603:6000:AA4D:C5B8:0:3361:EAF8:97B7|2603:6000:AA4D:C5B8:0:3361:EAF8:97B7]] ([[User talk:2603:6000:AA4D:C5B8:0:3361:EAF8:97B7#top|talk]]) 00:48, 6 May 2022 (UTC)</small> <!--Autosigned by SineBot-->
:Whatever do you mean by a stable pair? A specific matching can have an UNstable pair, but being stable is a property of a whole matching, not a pair. In any case, this talk page is for improvements to our article based on published sources (and since there are so many publications on this topic, the bar to inclusion is pretty high). It is not for speculation on what directions research on this problem should take. —[[User:David Eppstein|David Eppstein]] ([[User talk:David Eppstein|talk]]) 05:19, 6 May 2022 (UTC)
|