Diagonal matrix: Difference between revisions

Content deleted Content added
m Scalar matrix: I added the adjective scalar before "invertible transforms are the center of the general linear group GL(V)", because all elements of GL(V) are invertible by definition and one knows GL(V) is not abelian, so the center cannot be the entire group GL(V), in fact, the center consists of dilations and contractions.
AnomieBOT (talk | contribs)
m Dating maintenance tags: {{More footnotes needed}}
 
(14 intermediate revisions by 10 users not shown)
Line 1:
{{Use American English|date = March 2019}}
{{Short description|Matrix whose only nonzero elements are on its main diagonal}}
{{More footnotes needed|date=June 2025}}
 
In [[linear algebra]], a '''diagonal matrix''' is a [[matrix (mathematics)|matrix]] in which the entries outside the [[main diagonal]] are all zero; the term usually refers to [[square matrices]]. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagonal matrix is <math>\left[\begin{smallmatrix}
3 & 0 \\
Line 6 ⟶ 8:
\left[\begin{smallmatrix}
6 & 0 & 0 \\
0 & 05 & 0 \\
0 & 0 & 04
\end{smallmatrix}\right]</math>. An [[identity matrix]] of any size, or any multiple of it (is a diagonal matrix called a [[#Scalar matrix|''scalar matrix'']]), isfor aexample, diagonal matrix.<math>\left[\begin{smallmatrix}
0.5 & 0 \\
 
0 & 0.5 \end{smallmatrix}\right]</math>.
AIn [[geometry]], a diagonal matrix ismay sometimesbe calledused as a ''[[scaling matrix]]'', since matrix multiplication with it results in changing scale (size). Itsand determinantpossibly isalso the[[shape]]; productonly ofa itsscalar diagonalmatrix valuesresults in uniform change in scale.
 
==Definition==
 
As stated above, a diagonal matrix is a matrix in which all off-diagonal entries are zero. That is, the matrix {{math|1='''D''' = (''d''<sub>''i'',''j''</sub>)}} with ''{{mvar|n''}} columns and ''{{mvar|n''}} rows is diagonal if
<math display="block">\forall i,j \in \{1, 2, \ldots, n\}, i \ne j \implies d_{i,j} = 0.</math>
 
However, the main diagonal entries are unrestricted.
 
The term ''diagonal matrix'' may sometimes refer to a '''{{visible anchor|rectangular diagonal matrix}}''', which is an ''{{mvar|m''}}-by-''{{mvar|n''}} matrix with all the entries not of the form {{math|''d''<sub>''i'',''i''</sub>}} being zero. For example:
:<math display=block>\begin{bmatrix}
1 & 0 & 0\\
0 & 4 & 0\\
0 & 0 & -3\\
0 & 0 & 0\\
\end{bmatrix}</math> \quad \text{or} \quad <math>\begin{bmatrix}
1 & 0 & 0 & 0 & 0\\
0 & 4 & 0& 0 & 0\\
0 & 0 & -3& 0 & 0
\end{bmatrix}</math>
 
Line 46 ⟶ 49:
==Vector-to-matrix diag operator==
 
A diagonal matrix <{{math>\mathbf{|'''D'''}}</math> can be constructed from a vector <math>\mathbf{a} = \begin{bmatrix}a_1 & \dotsmdots & a_n\end{bmatrix}^\textsf{T}</math> using the <math>\operatorname{diag}</math> operator:
<math display="block">
\mathbf{D} = \operatorname{diag}(a_1, \dots, a_n).
</math>
 
This may be written more compactly as <math>\mathbf{D} = \operatorname{diag}(\mathbf{a})</math>.
 
The same operator is also used to represent [[Block matrix#Block diagonal matrices|block diagonal matrices]] as <math> \mathbf{A} = \operatorname{diag}(\mathbf A_1, \dots, \mathbf A_n)</math> where each argument <{{math>A_i</math>|'''A'''{{sub|''i''}}}} is a matrix.
 
The <math>\operatorname{{math|diag}</math>} operator may be written as:
<math display="block">
\operatorname{diag}(\mathbf{a}) = \left(\mathbf{a} \mathbf{1}^\textsf{T}\right) \circ \mathbf{I},
</math>
where <math>\circ</math> represents the [[Hadamard product (matrices)|Hadamard product]], and <math>\mathbf{{math|'''1'''}}</math> is a constant vector with elements 1.
 
==Matrix-to-vector diag operator==
 
The inverse matrix-to-vector <{{math>\operatorname{|diag}</math>} operator is sometimes denoted by the identically named <math>\operatorname{diag}(\mathbf{D}) = \begin{bmatrix}a_1 & \dotsmdots & a_n\end{bmatrix}^\textsf{T},</math> where the argument is now a matrix, and the result is a vector of its diagonal entries.
 
The following property holds:
<math display="block">
\operatorname{diag}(\mathbf{A}\mathbf{B}) = \sum_j \left(\mathbf{A} \circ \mathbf{B}^\textsf{T}\right)_{ij} = \left( \mathbf{A} \circ \mathbf{B}^\textsf{T} \right) \mathbf{1} .
</math>
 
== Scalar matrix ==
{{Confusing|section|reason=many sentences use incorrect, awkward grammar and should be reworded to make sense|date=February 2021}}
<!-- Linked from [[Scalar matrix]] and [[Scalar transformation]] -->
A diagonal matrix with equal diagonal entries is a '''scalar matrix'''; that is, a scalar multiple ''{{mvar|λ''}} of the [[identity matrix]] {{mvarmath|'''I'''}}. Its effect on a [[vector (mathematics and physics)|vector]] is [[scalar multiplication]] by ''{{mvar|λ''}}. For example, a 3×3 scalar matrix has the form:
<math display="block">
\begin{bmatrix}
Line 76 ⟶ 84:
</math>
 
The scalar matrices are the [[center of an algebra|center]] of the algebra of matrices: that is, they are precisely the matrices that [[commute (mathematics)|commute]] with all other square matrices of the same size.{{efn|Proof: given the [[elementary matrix]] <math>e_{ij}</math>, <math>Me_{ij}</math> is the matrix with only the ''i''-th row of ''M'' and <math>e_{ij}M</math> is the square matrix with only the ''M'' ''j''-th column, so the non-diagonal entries must be zero, and the ''i''th diagonal entry much equal the ''j''th diagonal entry.}} By contrast, over a [[field (mathematics)|field]] (like the real numbers), a diagonal matrix with all diagonal elements distinct only commutes with diagonal matrices (its [[centralizer]] is the set of diagonal matrices). That is because if a diagonal matrix <math>\mathbf{D} = \operatorname{diag}(a_1, \dots, a_n)</math> has <math>a_i \neq a_j,</math> then given a matrix <{{math>\mathbf{|'''M'''}}</math> with <math>m_{ij} \neq 0,</math> the <{{math>|(''i'', ''j'')</math>}} term of the products are: <math>(\mathbf{D}\mathbf{MDM})_{ij} = a_im_{ij}</math> and <math>(\mathbf{M}\mathbf{DMD})_{ij} = m_{ij}a_j,</math> and <math>a_jm_{ij} \neq m_{ij}a_i</math> (since one can divide by <math>m_{{mvar|m{{sub|ij}</math>}}}), so they do not commute unless the off-diagonal terms are zero.{{efn|Over more general rings, this does not hold, because one cannot always divide.}} Diagonal matrices where the diagonal entries are not all equal or all distinct have centralizers intermediate between the whole space and only diagonal matrices.<ref>{{cite web |url=https://math.stackexchange.com/q/1697991 |title=Do Diagonal Matrices Always Commute? |author=<!--Not stated--> |date=March 15, 2016 |publisher=Stack Exchange |access-date=August 4, 2018 }}</ref>
 
For an abstract vector space ''{{mvar|V''}} (rather than the concrete vector space <math>{{mvar|K^{{sup|n</math>}}}}), the analog of scalar matrices are '''scalar transformations'''. This is true more generally for a [[module (ring theory)|module]] ''{{mvar|M''}} over a [[ring (algebra)|ring]] ''{{mvar|R''}}, with the [[endomorphism algebra]] {{math|End(''M'')}} (algebra of linear operators on ''{{mvar|M''}}) replacing the algebra of matrices. Formally, scalar multiplication is a linear map, inducing a map <math>R \to \operatorname{End}(M),</math> (from a scalar ''{{mvar|&lambda;''}} to its corresponding scalar transformation, multiplication by ''{{mvar|&lambda;''}}) exhibiting {{math|End(''M'')}} as a ''{{mvar|R''}}-[[Algebra (ring theory)|algebra]]. For vector spaces, the scalar transforms are exactly the [[center of a ring|center]] of the endomorphism algebra, and, similarly, scalar invertible transforms are the center of the [[general linear group]] {{math|GL(''V'')}}. The former is more generally true [[free module]]s <math>M \cong R^n,</math>, for which the endomorphism algebra is isomorphic to a matrix algebra.
 
== Vector operations ==
Line 102 ⟶ 110:
 
== Matrix operations ==
The operations of matrix addition and [[matrix multiplication]] are especially simple for diagonal matrices. Write {{math|diag(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>'')}} for a diagonal matrix whose diagonal entries starting in the upper left corner are {{math|''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>''}}. Then, for [[matrix addition|addition]], we have
 
<math display=block>
:{{math|diag(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)}} + {{math|diag(''b''<sub>1</sub>, ..., ''b''<sub>''n''</sub>)}} = {{math|diag(''a''<sub>1</sub> + ''b''<sub>1</sub>, ..., ''a''<sub>''n''</sub> + ''b''<sub>''n''</sub>)}}
\operatorname{diag}(a_1,\, \ldots,\, a_n) + \operatorname{diag}(b_1,\, \ldots,\, b_n) = \operatorname{diag}(a_1 + b_1,\, \ldots,\, a_n + b_n)</math>
 
and for [[matrix multiplication]],
 
<math display=block>\operatorname{diag}(a_1,\, \ldots,\, a_n) \operatorname{diag}(b_1,\, \ldots,\, b_n) = \operatorname{diag}(a_1 b_1,\, \ldots,\, a_n b_n).</math>
:{{math|diag(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)}} {{math|diag(''b''<sub>1</sub>, ..., ''b''<sub>''n''</sub>)}} = {{math|diag(''a''<sub>1</sub>''b''<sub>1</sub>, ..., ''a''<sub>''n''</sub>''b''<sub>''n''</sub>)}}.
 
The diagonal matrix {{math|diag(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>'')}} is [[invertible matrix|invertible]] [[if and only if]] the entries {{math|''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>''}} are all nonzero. In this case, we have
 
<math display=block>\operatorname{diag}(a_1,\, \ldots,\, a_n)^{-1} = \operatorname{diag}(a_1^{-1},\, \ldots,\, a_n^{-1}).</math>
:{{math|diag(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)<sup>−1</sup>}} = {{math|diag(''a''<sub>1</sub><sup>−1</sup>, ..., ''a''<sub>''n''</sub><sup>−1</sup>)}}.
 
In particular, the diagonal matrices form a [[subring]] of the ring of all ''{{mvar|n''}}-by-''{{mvar|n''}} matrices.
 
Multiplying an ''{{mvar|n''}}-by-''{{mvar|n''}} matrix {{mvarmath|'''A'''}} from the ''left'' with {{math|diag(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>'')}} amounts to multiplying the {{mvar|i}}-th ''row'' of {{mvarmath|'''A'''}} by {{mathmvar|''a''<sub>''i''</sub>}} for all {{mvar|i}}; multiplying the matrix {{mvarmath|'''A'''}} from the ''right'' with {{math|diag(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>'')}} amounts to multiplying the {{mvar|i}}-th ''column'' of {{mvarmath|'''A'''}} by {{mathmvar|''a''<sub>''i''</sub>}} for all {{mvar|i}}.
 
== Operator matrix in eigenbasis ==
{{Main|Transformation matrix#Finding the matrix of a transformation|Eigenvalues and eigenvectors}}
 
As explained in [[transformation matrix#Finding the matrix of a transformation|determining coefficients of operator matrix]], there is a special basis, {{math|'''e'''<sub>1</sub>, ..., '''e'''<sub>''n''</sub>}}, for which the matrix <math>\mathbf{{math|'''A'''}}</math> takes the diagonal form. Hence, in the defining equation <math display="inline">\mathbf{AAe} \mathbf e_j_j = \sum_i a_{i,j} \mathbf e_i</math>, all coefficients <math>a_{{mvar|a{{sub|i, j} </math>}}} with {{math|''i'' ≠ ''j''}} are zero, leaving only one term per sum. The surviving diagonal elements, <math>a_{{mvar|a{{sub|i,i j}}}}</math>, are known as '''eigenvalues''' and designated with <math>\lambda_i</math>{{mvar|&lambda;{{sub|i}}}} in the equation, which reduces to <math>\mathbf{AAe} \mathbf e_i_i = \lambda_i \mathbf e_i.</math>. The resulting equation is known as '''eigenvalue equation'''<ref>{{cite book |last=Nearing |first=James |year=2010 |title=Mathematical Tools for Physics |url=http://www.physics.miami.edu/nearing/mathmethods |chapter=Chapter 7.9: Eigenvalues and Eigenvectors |publisher=Dover Publications |chapter-url= http://www.physics.miami.edu/~nearing/mathmethods/operators.pdf |access-date=January 1, 2012|isbn=978-0486482125}}</ref> and used to derive the [[characteristic polynomial]] and, further, [[eigenvalues and eigenvectors]].
 
In other words, the [[eigenvalue]]s of {{math|diag(''λ''<sub>1</sub>, ..., ''λ''<sub>''n''</sub>)}} are {{math|''λ''<sub>1</sub>, ..., ''λ''<sub>''n''</sub>}} with associated [[eigenvectors]] of {{math|'''e'''<sub>1</sub>, ..., '''e'''<sub>''n''</sub>}}.
Line 133 ⟶ 142:
** A matrix is diagonal if and only if it is both [[triangular matrix|upper-]] and [[triangular matrix|lower-triangular]].
** A diagonal matrix is [[symmetric matrix|symmetric]].
* The [[identity matrix]] {{math|'''I'''<sub>''n''</sub>}} and [[zero matrix]] are diagonal.
* A 1×1 matrix is always diagonal.
* The square of a 2×2 matrix with zero [[trace (linear algebra)|trace]] is always diagonal.
 
== Applications ==
Diagonal matrices occur in many areas of linear algebra. Because of the simple description of the matrix operation and eigenvalues/eigenvectors given above, it is typically desirable to represent a given matrix or [[linear operator|linear map]] by a diagonal matrix.
 
In fact, a given ''{{mvar|n''}}-by-''{{mvar|n''}} matrix {{mvarmath|'''A'''}} is [[similar matrix|similar]] to a diagonal matrix (meaning that there is a matrix {{mvarmath|'''X'''}} such that {{math|'''X'''<sup>−1</sup>'''AX'''}} is diagonal) if and only if it has {{mvar|n}} [[linearly independent]] eigenvectors. Such matrices are said to be [[diagonalizable matrix|diagonalizable]].
 
Over the [[field (mathematics)|field]] of [[real number|real]] or [[complex number|complex]] numbers, more is true. The [[spectral theorem]] says that every [[normal matrix]] is [[matrix similarity|unitarily similar]] to a diagonal matrix (if {{math|1='''AA'''<sup>∗</sup> = '''A'''<sup>∗</sup>'''A'''}} then there exists a [[unitary matrix]] {{mvarmath|'''U'''}} such that {{math|'''UAU'''<sup>∗</sup>}} is diagonal). Furthermore, the [[singular value decomposition]] implies that for any matrix {{mvarmath|'''A'''}}, there exist unitary matrices {{mvarmath|'''U'''}} and {{mvarmath|'''V'''}} such that {{math|'''U'''<sup>∗</sup>'''AV'''}} is diagonal with positive entries.
 
== Operator theory ==