Plummer model: Difference between revisions

Content deleted Content added
Link suggestions feature: 3 links added.
 
(5 intermediate revisions by 5 users not shown)
Line 5:
 
The Plummer 3-dimensional density profile is given by
: <math display="block">\rho_P(r) = \frac{3M_0}{4\pi a^3} \left(1 + \frac{r^2}{a^2}\right)^{-\frac{5}/{2}},</math>
where ''<math>M_0</math>'' is the total mass of the cluster, and ''a'' is the '''Plummer radius''', a [[scale parameter]] that sets the size of the cluster core. The corresponding potential is
: <math display="block">\Phi_P(r) = -\frac{G M_0}{\sqrt{r^2 + a^2}},</math>
where ''G'' is [[Isaac Newton|Newton]]'s [[gravitational constant]]. The [[velocity dispersion]] is
: <math display="block">\sigma_P^2(r) = \frac{G M_0}{6\sqrt{r^2 + a^2}}.</math>
 
The isotropic distribution function is reads
: <math>\rho_P(r) = \frac{3M_0}{4\pi a^3} \left(1 + \frac{r^2}{a^2}\right)^{-\frac{5}{2}},</math>
: <math display="block">f(\vec{x}, \vec{v}) = \frac{24\sqrt{2}}{7\pi^3} \frac{a^2}{G^5 M_0^4} (-E(\vec{x}, \vec{v}))^{7/2},</math>
 
if <math>E < 0</math>, and <math>f(\vec{x}, \vec{v}) = 0</math> otherwise, where <math display="inline">E(\vec{x}, \vec{v}) = \frac12frac{1}{2} v^2 + \Phi_P(r)</math> is the [[specific energy]].
where ''<math>M_0</math>'' is the total mass of the cluster, and ''a'' is the '''Plummer radius''', a scale parameter that sets the size of the cluster core. The corresponding potential is
 
: <math>\Phi_P(r) = -\frac{G M_0}{\sqrt{r^2 + a^2}},</math>
 
where ''G'' is [[Isaac Newton|Newton]]'s [[gravitational constant]]. The velocity dispersion is
 
: <math>\sigma_P^2(r) = \frac{G M_0}{6\sqrt{r^2 + a^2}}.</math>
 
The distribution function is
 
: <math>f(\vec{x}, \vec{v}) = \frac{24\sqrt{2}}{7\pi^3} \frac{a^2}{G^5 M_0^4} (-E(\vec{x}, \vec{v}))^{7/2},</math>
 
if <math>E < 0</math>, and <math>f(\vec{x}, \vec{v}) = 0</math> otherwise, where <math>E(\vec{x}, \vec{v}) = \frac12 v^2 + \Phi_P(r)</math> is the [[specific energy]].
 
== Properties ==
 
The mass enclosed within radius <math>r</math> is given by
: <math display="block">M(<r) = 4\pi\int_0^r r'^2 \rho_P(r') \,dr' = M_0 \frac{r^3}{(r^2 + a^2)^{3/2}}.</math>
 
Many other properties of the Plummer model are described in [[Herwig Dejonghe]]'s comprehensive article.<ref>Dejonghe, H. (1987), [http://adsabs.harvard.edu/abs/1987MNRAS.224...13D A completely analytical family of anisotropic Plummer models]. ''[[Monthly Notices of the Royal Astronomical Society|Mon. Not. R. Astron. Soc.]]'' '''224''', 13.</ref>
 
Core radius <math>r_c</math>, where the surface density drops to half its central value, is at <math display="inline">r_c = a \sqrt{\sqrt{2} - 1} \approx 0.64 a</math>.
 
[[Half-mass radius]] is <math>r_h = \left(\frac{1}{0.5^{2/3}} - 1\right)^{-0.5} a \approx 1.3 a.</math>
Line 36 ⟶ 29:
 
The 2D surface density is:
<math display="block"> \Sigma(R) = \int_{-\infty}^{\infty}\rho(r(z))dz=2\int_{0}^{\infty}\frac{3a^2M_0dz}{4\pi(a^2+z^2+R^2)^{5/2}} = \frac{M_0a^2}{\pi(a^2+R^2)^2},</math>,
 
<math> \Sigma(R)=\int_{-\infty}^{\infty}\rho(r(z))dz=2\int_{0}^{\infty}\frac{3a^2M_0dz}{4\pi(a^2+z^2+R^2)^{5/2}}=\frac{M_0a^2}{\pi(a^2+R^2)^2}</math>,
 
and hence the 2D projected mass profile is:
<math display="block">M(R)=2\pi\int_{0}^{R}\Sigma(R')\, R'dR'=M_0\frac{R^2}{a^2+R^2}.</math>.
 
In astronomy, it is convenient to define 2D half-mass radius which is the radius where the 2D projected mass profile is half of the total mass: <math>M(R_{1/2}) = M_0/2</math>.
<math>M(R)=2\pi\int_{0}^{R}\Sigma(R')\, R'dR'=M_0\frac{R^2}{a^2+R^2}</math>.
 
In astronomy, it is convenient to define 2D half-mass radius which isFor the radius where the 2D projected massPlummer profile is half of the total mass: <math>M(R_{1/2}) =M_0/2 a</math>.
 
For the Plummer profile: <math>R_{1/2}=a</math>.
 
The escape velocity at any point is
:<math display="block">v_{\rm esc}(r)=\sqrt{-2\Phi(r)}=\sqrt{12}\,\sigma(r) ,</math>
 
For bound orbits, the radial turning points of the orbit is characterized by [[specific energy]] <math>E = \frac{1}{2} v^2 + \Phi(r)</math> and [[specific relative angular momentum|specific angular momentum]] <math>L = |\vec{r} \times \vec{v}|</math> are given by the positive roots of the [[cubic function|cubic equation]]
 
:<math>R^3 + \frac{GM_0}{E} R^2 - \left(\frac{L^2}{2E} + a^2\right) R - \frac{GM_0a^2}{E} = 0,</math>
 
where <math>R = \sqrt{r^2 + a^2}</math>, so that <math>r = \sqrt{R^2 - a^2}</math>. This equation has three real roots for <math>R</math>: two positive and one negative, given that <math>L < L_c(E)</math>, where <math>L_c(E)</math> is the specific angular momentum for a circular orbit for the same energy. Here <math>L_c</math> can be calculated from single real root of the [[Cubic function #The discriminant|discriminant of the cubic equation]], which is itself another [[cubic function|cubic equation]]
 
:<math>\underline{E}\, \underline{L}_c^3 + \left(6 \underline{E}^2 \underline{a}^2 + \frac{1}{2}\right)\underline{L}_c^2 + \left(12 \underline{E}^3 \underline{a}^4 + 20 \underline{E} \underline{a}^2 \right) \underline{L}_c + \left(8 \underline{E}^4 \underline{a}^6 - 16 \underline{E}^2 \underline{a}^4 + 8 \underline{a}^2\right) = 0,</math>
 
For bound orbits, the radial turning points of the orbit is characterized by [[specific energy]] <math display="inline">E = \frac{1}{2} v^2 + \Phi(r)</math> and [[specific relative angular momentum|specific angular momentum]] <math>L = |\vec{r} \times \vec{v}|</math> are given by the positive roots of the [[cubic function|cubic equation]]
:<math display="block">R^3 + \frac{GM_0}{E} R^2 - \left(\frac{L^2}{2E} + a^2\right) R - \frac{GM_0a^2}{E} = 0,</math>
where <math>R = \sqrt{r^2 + a^2}</math>, so that <math>r = \sqrt{R^2 - a^2}</math>. This equation has three real roots for <math>R</math>: two positive and one negative, given that <math>L < L_c(E)</math>, where <math>L_c(E)</math> is the specific angular momentum for a [[circular orbit]] for the same energy. Here <math>L_c</math> can be calculated from single real root of the [[Cubic function #The discriminant|discriminant of the cubic equation]], which is itself another [[cubic function|cubic equation]]
:<math display="block">\underline{E}\, \underline{L}_c^3 + \left(6 \underline{E}^2 \underline{a}^2 + \frac{1}{2}\right)\underline{L}_c^2 + \left(12 \underline{E}^3 \underline{a}^4 + 20 \underline{E} \underline{a}^2 \right) \underline{L}_c + \left(8 \underline{E}^4 \underline{a}^6 - 16 \underline{E}^2 \underline{a}^4 + 8 \underline{a}^2\right) = 0,</math>
where underlined parameters are dimensionless in [[N-body units|Henon units]] defined as <math>\underline{E} = E r_V / (G M_0)</math>, <math>\underline{L}_c = L_c / \sqrt{G M r_V}</math>, and <math>\underline{a} = a / r_V = 3 \pi/16</math>.
 
Line 71 ⟶ 57:
 
[[Category:Astrophysics]]
[[Category:Equations of astronomy]]