Plummer model: Difference between revisions

Content deleted Content added
Bkocsis (talk | contribs)
Properties: added radial turning points and circular angular momentum
Link suggestions feature: 3 links added.
 
(18 intermediate revisions by 12 users not shown)
Line 1:
The '''Plummer model''' or '''Plummer sphere''' is a density law that was first used by [[Henry Crozier Keating Plummer|H. C. Plummer]] to fit observations of [[globular cluster]]s.<ref>Plummer, H. C. (1911), [http://adsabs.harvard.edu/abs/1911MNRAS..71..460P On the problem of distribution in globular star clusters], ''[[Monthly Notices of the Royal Astronomical Society|Mon. Not. R. Astron. Soc.]]'' '''71''', 460.</ref> It is now often used as [[toy model]] in [[N-body simulation]]s of stellar systems.
 
== Description of the model ==
Line 5:
 
The Plummer 3-dimensional density profile is given by
:<math display="block">\rho_P(r) = \bigg(\frac{3M3M_0}{4\pi a^3} \bigg)\biggleft(1 + \frac{r^2}{a^2}\biggright)^{-\frac{5}/{2}}\,,</math>
where ''M''<math>M_0</math> is the total mass of the cluster, and ''a'' is the '''Plummer radius''', a [[scale parameter]] whichthat sets the size of the cluster core. The corresponding potential is
:<math> display="block">\Phi_P(r) = -\frac{G MM_0}{\sqrt{r^2 + a^2}}\,,</math>
where ''G'' is [[Isaac Newton|Newton]]'s [[gravitational constant]]. The [[velocity dispersion]] is
:<math> display="block">\sigma_P^2(r) = \frac{G MM_0}{6\sqrt{r^2 + a^2}}\,.</math>
 
The isotropic distribution function is reads
:<math>\rho_P(r) = \bigg(\frac{3M}{4\pi a^3}\bigg)\bigg(1+\frac{r^2}{a^2}\bigg)^{-\frac{5}{2}}\,,</math>
:<math> display="block">f(\vec{x}, \vec{v}) = \frac{24\sqrt{2}}{7\pi^3} \frac{N a^2}{G^5 MM_0^54} |(-E(\vec{x}, \vec{v})|)^{7/2}\,,</math>
if <math>E < 0</math>, and <math>f(\vec{x}, \vec{v}) = 0</math> otherwise, where <math display="inline">E(\vec{x}, \vec{v}) = \frac12frac{1}{2} v^2 + \Phi_P(r)</math> is the [[specific energy]].
 
== Properties ==
where ''M'' is the total mass of the cluster, and ''a'' is the '''Plummer radius''', a scale parameter which sets the size of the cluster core. The corresponding potential is
 
The mass enclosed within radius <math>r</math> is given by
:<math> \Phi_P(r) = -\frac{G M}{\sqrt{r^2+a^2}}\,,</math>
:<math display="block">M(<r) = 4\pi\int_0^r r'^2 \rho_P(r') \,dr' = MM_0 \frac{r^3\over\left}{(r^2 + a^2\right)^{3/2}}.</math>.
 
Many other properties of the Plummer model are described in [[Herwig Dejonghe]]'s comprehensive paperarticle.<ref>Dejonghe, H. (1987), [http://adsabs.harvard.edu/abs/1987MNRAS.224...13D A completely analytical family of anisotropic Plummer models]. ''[[Monthly Notices of the Royal Astronomical Society|Mon. Not. R. Astron. Soc.]]'' '''224''', 13.</ref>
where ''G'' is [[Isaac Newton|Newton]]'s [[gravitational constant]]. The velocity dispersion is
 
Core radius <math>r_c</math>, where the surface density drops to half its central value, is at <math display="inline">r_c = a \sqrt{\sqrt{2} - 1} \approx 0.64 a</math>.
:<math> \sigma_P^2(r) = \frac{G M}{6\sqrt{r^2+a^2}}\,.</math>
 
[[Half-mass radius]] is <math>r_h = \left(\frac{1}{0.5^{2/3}} - 1\right)^{-0.5} a \approx 1.3 a.</math>
The distribution function is
 
[[Virial Theorem#Galaxies and cosmology (virial mass and radius)|Virial radius]] is <math>r_V = \frac{16}{3 \pi} a \approx 1.7 a</math>.
:<math> f(\vec{x},\vec{v}) = \frac{24\sqrt{2}}{7\pi^3} \frac{N a^2}{G^5 M^5} |E(\vec{x},\vec{v})|^{7/2}\,,</math>
 
where <math>E(\vec{x},\vec{v})=\frac12 v^2 + \Phi_P(r)</math> is the specific energy.
 
== Properties ==
 
The mass enclosed within radius <math>r</math> is given by
:<math>M(<r) = 4\pi\int_0^r r^2 \rho_P(r) dr = M{r^3\over\left(r^2+a^2\right)^{3/2}}</math>.
 
The 2D surface density is:
Many other properties of the Plummer model are described in [[Herwig Dejonghe]]'s comprehensive paper.<ref>Dejonghe, H. (1987), [http://adsabs.harvard.edu/abs/1987MNRAS.224...13D A completely analytical family of anisotropic Plummer models]. ''[[Monthly Notices of the Royal Astronomical Society|Mon. Not. R. Astron. Soc.]]'' '''224''', 13</ref>
<math display="block"> \Sigma(R) = \int_{-\infty}^{\infty}\rho(r(z))dz=2\int_{0}^{\infty}\frac{3a^2M_0dz}{4\pi(a^2+z^2+R^2)^{5/2}} = \frac{M_0a^2}{\pi(a^2+R^2)^2},</math>
and hence the 2D projected mass profile is:
<math display="block">M(R)=2\pi\int_{0}^{R}\Sigma(R')\, R'dR'=M_0\frac{R^2}{a^2+R^2}.</math>
 
CoreIn astronomy, it is convenient to define 2D half-mass radius <math>r_c</math>,which is the radius where the surface2D densityprojected dropsmass toprofile is half itsof centralthe value,total is atmass: <math>r_c =a\sqrt{\sqrtM(R_{1/2}-1}\approx0.64a) = M_0/2</math>.
 
[[Half-massFor radius]]the isPlummer profile: <math>r_h \approx R_{1.3/2} = a</math>.
 
The escape velocity at any point is
[[Virial Theorem#Galaxies and cosmology (virial mass and radius)|Virial radius]] is <math>r_V = \frac{16}{3 \pi} a \approx 1.7 a</math>
<math display="block">v_{\rm esc}(r)=\sqrt{-2\Phi(r)}=\sqrt{12}\,\sigma(r) ,</math>
 
TheFor bound orbits, the radial turning points of anthe orbit is characterized by [[specific energy]] <math display="inline">E = \frac{1}{2} v^2 + \Phi(r)</math> and [[specific relative angular momentum|specific angular momentum]] <math>L = |\vec{r} \times \vec{v}|</math> are given by the positive roots of the [[cubic function|cubic equation]]
:<math display="block">R^3 + \frac{GMGM_0}{E} R^2 - \left(\frac{L^2}{2E} + a^2 \right) R - \frac{GMaGM_0a^2}{E} = 0 ,</math>.
where <math>R = \sqrt{r^2 + a^2}</math>, so that <math>r = \sqrt{R^2 - a^2}</math>. This equation has three real roots for <math>R</math>,: two positive and one negative, given that <math>L < L_c(E)</math>, where <math>L_c(E)</math> is the specific angular momentum for a [[circular orbit]] for the same energy. ThisHere <math>L_c</math> can be calculated from single real root of the [[Cubic function #The discriminant|discriminant of the cubic equation]], which is itself another [[cubic function|cubic equation]]
:<math display="block">\underline{E}\, \underline{L}_c^3 + \left(6 \underline{E}^2 \underline{a}^2 + \frac{1}{2}\right)\underline{L}_c^2 + \left(12 \underline{E}^3 \underline{a}^4 + 20 \underline{E} \underline{a}^2 \right) \underline{L}_c + \left(8 \underline{E}^4 \underline{a}^6 - 16 \underline{E}^2 \underline{a}^4 + 8 \underline{a}^2\right) = 0 ,</math>
where underlined parameters are dimensionless in [[N-body units|Henon units]] defined as <math>\underline{E} =Er_V E r_V / (GMG M_0)</math>, <math>\underline{L}_c = L_c / \sqrt{G\, M\, r_V}</math>, and <math>\underline{a} = a / r_V = 3 \pi/16</math>.
 
== Applications ==
Line 52 ⟶ 57:
 
[[Category:Astrophysics]]
[[Category:Equations of astronomy]]