Content deleted Content added
Link suggestions feature: 3 links added. |
|||
(17 intermediate revisions by 12 users not shown) | |||
Line 1:
The '''Plummer model''' or '''Plummer sphere''' is a density law that was first used by [[Henry Crozier Keating Plummer|H. C. Plummer]] to fit observations of [[globular cluster]]s.<ref>Plummer, H. C. (1911), [http://adsabs.harvard.edu/abs/1911MNRAS..71..460P On the problem of distribution in globular star clusters], ''[[Monthly Notices of the Royal Astronomical Society|Mon. Not. R. Astron. Soc.]]'' '''71''', 460.</ref> It is now often used as [[toy model]] in [[N-body simulation]]s of stellar systems.
== Description of the model ==
Line 5:
The Plummer 3-dimensional density profile is given by
where
where ''G'' is [[Isaac Newton|Newton]]'s [[gravitational constant]]. The [[velocity dispersion]] is▼
▲:<math>\rho_P(r) = \bigg(\frac{3M}{4\pi a^3}\bigg)\bigg(1+\frac{r^2}{a^2}\bigg)^{-\frac{5}{2}}\,,</math>
if <math>E < 0</math>, and <math>f(\vec{x}, \vec{v}) = 0</math> otherwise, where <math display="inline">E(\vec{x}, \vec{v}) = \
== Properties ==▼
▲where ''M'' is the total mass of the cluster, and ''a'' is the '''Plummer radius''', a scale parameter which sets the size of the cluster core. The corresponding potential is
The mass enclosed within radius <math>r</math> is given by ▼
▲:<math> \Phi_P(r) = -\frac{G M}{\sqrt{r^2+a^2}}\,,</math>
Many other properties of the Plummer model are described in [[Herwig Dejonghe]]'s comprehensive
▲where ''G'' is [[Isaac Newton|Newton]]'s [[gravitational constant]]. The velocity dispersion is
Core radius <math>r_c</math>, where the surface density drops to half its central value, is at <math display="inline">r_c = a \sqrt{\sqrt{2} - 1} \approx 0.64 a</math>.
▲:<math> \sigma_P^2(r) = \frac{G M}{6\sqrt{r^2+a^2}}\,.</math>
[[Half-mass radius]] is <math>r_h = \left(\frac{1}{0.5^{2/3}} - 1\right)^{-0.5} a \approx 1.3 a.</math>
▲The distribution function is
[[Virial Theorem#Galaxies and cosmology (virial mass and radius)|Virial radius]] is <math>r_V = \frac{16}{3 \pi} a \approx 1.7 a</math>.▼
▲:<math> f(\vec{x},\vec{v}) = \frac{24\sqrt{2}}{7\pi^3} \frac{N a^2}{G^5 M^5} |E(\vec{x},\vec{v})|^{7/2}\,,</math>
▲where <math>E(\vec{x},\vec{v})=\frac12 v^2 + \Phi_P(r)</math> is the specific energy.
▲== Properties ==
▲The mass enclosed within radius <math>r</math> is given by
▲:<math>M(<r) = 4\pi\int_0^r r^2 \rho_P(r) dr = M{r^3\over\left(r^2+a^2\right)^{3/2}}</math>.
The 2D surface density is:
▲Many other properties of the Plummer model are described in [[Herwig Dejonghe]]'s comprehensive paper.<ref>Dejonghe, H. (1987), [http://adsabs.harvard.edu/abs/1987MNRAS.224...13D A completely analytical family of anisotropic Plummer models]. ''[[Monthly Notices of the Royal Astronomical Society|Mon. Not. R. Astron. Soc.]]'' '''224''', 13</ref>
<math display="block"> \Sigma(R) = \int_{-\infty}^{\infty}\rho(r(z))dz=2\int_{0}^{\infty}\frac{3a^2M_0dz}{4\pi(a^2+z^2+R^2)^{5/2}} = \frac{M_0a^2}{\pi(a^2+R^2)^2},</math>
and hence the 2D projected mass profile is:
<math display="block">M(R)=2\pi\int_{0}^{R}\Sigma(R')\, R'dR'=M_0\frac{R^2}{a^2+R^2}.</math>
The escape velocity at any point is
▲[[Virial Theorem#Galaxies and cosmology (virial mass and radius)|Virial radius]] is <math>r_V = \frac{16}{3 \pi} a \approx 1.7 a</math>
<math display="block">v_{\rm esc}(r)=\sqrt{-2\Phi(r)}=\sqrt{12}\,\sigma(r) ,</math>
where <math>R = \sqrt{r^2 + a^2}</math>, so that <math>r = \sqrt{R^2 - a^2}</math>. This equation has three real roots for <math>R</math>
where underlined parameters are dimensionless in [[N-body units|Henon units]] defined as <math>\underline{E} =
== Applications ==
Line 52 ⟶ 57:
[[Category:Astrophysics]]
[[Category:Equations of astronomy]]
|