Content deleted Content added
m →Description of the model: fmt., punct. |
Link suggestions feature: 3 links added. |
||
(11 intermediate revisions by 9 users not shown) | |||
Line 1:
The '''Plummer model''' or '''Plummer sphere''' is a density law that was first used by [[Henry Crozier Keating Plummer|H. C. Plummer]] to fit observations of [[globular cluster]]s.<ref>Plummer, H. C. (1911), [http://adsabs.harvard.edu/abs/1911MNRAS..71..460P On the problem of distribution in globular star clusters], ''[[Monthly Notices of the Royal Astronomical Society|Mon. Not. R. Astron. Soc.]]'' '''71''', 460.</ref> It is now often used as [[toy model]] in [[N-body simulation]]s of stellar systems.
== Description of the model ==
Line 5:
The Plummer 3-dimensional density profile is given by
where
where ''G'' is [[Isaac Newton|Newton]]'s [[gravitational constant]]. The [[velocity dispersion]] is▼
▲: <math>\rho_P(r) = \frac{3M}{4\pi a^3} \left(1 + \frac{r^2}{a^2}\right)^{-\frac{5}{2}},</math>
if <math>E < 0</math>, and <math>f(\vec{x}, \vec{v}) = 0</math> otherwise, where <math display="inline">E(\vec{x}, \vec{v}) = \
▲where ''M'' is the total mass of the cluster, and ''a'' is the '''Plummer radius''', a scale parameter that sets the size of the cluster core. The corresponding potential is
▲: <math>\Phi_P(r) = -\frac{G M}{\sqrt{r^2 + a^2}},</math>
▲where ''G'' is [[Isaac Newton|Newton]]'s [[gravitational constant]]. The velocity dispersion is
▲: <math>\sigma_P^2(r) = \frac{G M}{6\sqrt{r^2 + a^2}}.</math>
▲The distribution function is
▲: <math>f(\vec{x}, \vec{v}) = \frac{24\sqrt{2}}{7\pi^3} \frac{N a^2}{G^5 M^5} (-E(\vec{x}, \vec{v}))^{7/2},</math>
▲if <math>E < 0</math>, and <math>f(\vec{x}, \vec{v}) = 0</math> otherwise, where <math>E(\vec{x}, \vec{v}) = \frac12 v^2 + \Phi_P(r)</math> is the [[specific energy]].
== Properties ==
The mass enclosed within radius <math>r</math> is given by
Many other properties of the Plummer model are described in [[Herwig Dejonghe]]'s comprehensive
Core radius <math>r_c</math>, where the surface density drops to half its central value, is at <math display="inline">r_c = a \sqrt{\sqrt{2} - 1} \
[[Half-mass radius]] is <math>r_h = \
[[Virial Theorem#Galaxies and cosmology (virial mass and radius)|Virial radius]] is <math>r_V = \frac{16}{3 \pi} a \approx 1.7 a</math>.
The 2D surface density is:
The radial turning points of an orbit characterized by [[specific energy]] <math>E=\frac{1}{2} v^2 + \Phi(r)</math> and [[specific relative angular momentum|specific angular momentum]] <math>L=|\vec{r}\times\vec{v}|</math> are given by the positive roots of the [[cubic function|cubic equation]]▼
<math display="block"> \Sigma(R) = \int_{-\infty}^{\infty}\rho(r(z))dz=2\int_{0}^{\infty}\frac{3a^2M_0dz}{4\pi(a^2+z^2+R^2)^{5/2}} = \frac{M_0a^2}{\pi(a^2+R^2)^2},</math>
and hence the 2D projected mass profile is:
<math display="block">M(R)=2\pi\int_{0}^{R}\Sigma(R')\, R'dR'=M_0\frac{R^2}{a^2+R^2}.</math>
In astronomy, it is convenient to define 2D half-mass radius which is the radius where the 2D projected mass profile is half of the total mass: <math>M(R_{1/2}) = M_0/2</math>.
:<math>R^3 + \frac{GM}{E}R^2 - \left(\frac{L^2}{2E} + a^2 \right) R - \frac{GMa^2}{E} = 0 </math>.▼
For the Plummer profile: <math>R_{1/2} = a</math>.
where <math>R=\sqrt{r^2+a^2}</math> so that <math>r=\sqrt{R^2-a^2}</math>. This equation has three real roots for <math>R</math>, two positive and one negative given that <math>L<L_c(E)</math>, where <math>L_c(E)</math> is the specific angular momentum for a circular orbit for the same energy. Here <math>L_c</math> can be calculated from single real root of the [[Cubic function #The discriminant|discriminant of the cubic equation]] which is itself another [[cubic function|cubic equation]]▼
The escape velocity at any point is
:<math>\underline{E}\, \underline{L}_c^3 + \left(6 \underline{E}^2 \underline{a}^2 + \frac{1}{2}\right)\underline{L}_c^2 + \left(12 \underline{E}^3 \underline{a}^4 + 20 \underline{E} \underline{a}^2 \right) \underline{L}_c + \left(8 \underline{E}^4 \underline{a}^6 - 16 \underline{E}^2 \underline{a}^4 + 8 \underline{a}^2\right) = 0 </math>▼
<math display="block">v_{\rm esc}(r)=\sqrt{-2\Phi(r)}=\sqrt{12}\,\sigma(r) ,</math>
▲
where underlined parameters are dimensionless in Henon units defined as <math>\underline{E}=Er_V/(GM)</math>, <math>\underline{L}_c = L_c / \sqrt{G\, M\, r_V}</math>, and <math>\underline{a} = a / r_V = 3\pi/16</math>.▼
▲
▲where <math>R = \sqrt{r^2 + a^2}</math>, so that <math>r = \sqrt{R^2 - a^2}</math>. This equation has three real roots for <math>R</math>
▲
▲where underlined parameters are dimensionless in [[N-body units|Henon units]] defined as <math>\underline{E} =
== Applications ==
Line 56 ⟶ 57:
[[Category:Astrophysics]]
[[Category:Equations of astronomy]]
|