Convex hull: Difference between revisions

Content deleted Content added
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5
 
(20 intermediate revisions by 11 users not shown)
Line 3:
{{good article}}
[[File:Extreme points.svg|thumb|right|The convex hull of the red set is the blue and red [[convex set]].]]
In [[geometry]], the '''convex hull''' or, '''convex envelope''' or '''convex closure'''{{refn|The terminology ''convex closure'' refers to the fact that the convex hull defines a [[closure operator]]. However, this term is also frequently used to refer to the ''closed convex hull'', with which it should not be confused — see e.g {{harvtxt|Fan|1959}}, p.48.}} of a shape is the smallest [[convex set]] that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a [[Euclidean space]], or equivalently as the set of all [[convex combination]]s of points in the subset. For a [[Bounded set|bounded]] subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset.
 
Convex hulls of [[open set]]s are open, and convex hulls of [[compact set]]s are compact. Every compact convex set is the convex hull of its [[extreme point]]s. The convex hull operator is an example of a [[closure operator]], and every [[antimatroid]] can be represented by applying this closure operator to finite sets of points.
Line 44:
===Preservation of topological properties===
[[File:Versiera007.svg|thumb|The [[witch of Agnesi]]. The points on or above the red curve provide an example of a closed set whose convex hull is open (the open [[upper half-plane]]).]]
Topologically, the convex hull of an [[open set]] is always itself open, and (in Euclidean spaces) the convex hull of a compact set is always itself compact. However, there exist closed sets for which the convex hull is not closed.<ref>{{harvtxt|Grünbaum|2003}}, p. 16; {{harvtxt|Lay|1982}}, p. 21; {{harvtxt|Sakuma|1977}}.</ref> For instance, the closed set
 
:<math>\left \{ (x,y) \mathop{\bigg|} y\ge \frac{1}{1+x^2}\right\}</math>
Line 50:
(the set of points that lie on or above the [[witch of Agnesi]]) has the open [[upper half-plane]] as its convex hull.<ref>This example is given by {{harvtxt|Talman|1977}}, Remark 2.6.</ref>
 
TheConvex hulls can be defined more generally in infinite-dimensional [[topological vector space]]s, but they may not preserve compactness in these spaces. Instead, the compactness of convex hulls of compact sets, in finite-dimensional Euclidean spaces, is generalized by the [[Krein–Smulian theorem]], according to which the closed convex hull of a weakly compact subset of a [[Banach space]] (a subset that is compact under the [[weak topology]]) is weakly compact.{{sfnp|Whitley|1986}}
 
===Extreme points===
Line 84:
===Simple polygons===
{{main|Convex hull of a simple polygon}}
[[File:Convex hull of a simple polygon.svg|thumb|upright|Convex hull ( in blue and yellow) of a simple polygon (in blue)]]
The convex hull of a [[simple polygon]] encloses the given polygon and is partitioned by it into regions, one of which is the polygon itself. The other regions, bounded by a [[polygonal chain]] of the polygon and a single convex hull edge, are called ''pockets''. Computing the same decomposition recursively for each pocket forms a hierarchical description of a given polygon called its ''convex differences tree''.{{sfnp|Rappoport|1992}} Reflecting a pocket across its convex hull edge expands the given simple polygon into a polygon with the same perimeter and larger area, and the [[Erdős–Nagy theorem]] states that this expansion process eventually terminates.{{sfnp|Demaine|Gassend|O'Rourke|Toussaint|2008}}
 
Line 108:
 
[[Dynamic convex hull]] data structures can be used to keep track of the convex hull of a set of points undergoing insertions and deletions of points,{{sfnp|Chan|2012}} and [[kinetic convex hull]] structures can keep track of the convex hull for points moving continuously.{{sfnp|Basch|Guibas|Hershberger|1999}}
The construction of convex hulls also serves as a tool, a building block for a number of other computational-geometric algorithms such as the [[rotating calipers]] method for computing the [[width]] and [[Diameter (computational geometry)|diameter]] of a point set.{{sfnp|Toussaint|1983}}
 
== Related structures ==
Line 137:
 
== Applications ==
[[File:CIE1931xy_gamut_comparison.svg|thumb|The convex hull of the primary colors in each [[color space]] on a [[CIE 1931]] xy [[chromaticity diagram]] defines the space's [[gamut]] of possible colors]]
Convex hulls have wide applications in many fields. Within mathematics, convex hulls are used to study [[polynomial]]s, matrix [[eigenvalue]]s, and [[unitary element]]s, and several theorems in [[discrete geometry]] involve convex hulls. They are used in [[robust statistics]] as the outermost contour of [[Tukey depth]], are part of the [[bagplot]] visualization of two-dimensional data, and define risk sets of [[randomised decision rule|randomized decision rule]]s. Convex hulls of [[indicator vector]]s of solutions to combinatorial problems are central to [[combinatorial optimization]] and [[polyhedral combinatorics]]. In economics, convex hulls can be used to apply methods of [[convexity in economics]] to non-convex markets. In geometric modeling, the convex hull property [[Bézier curve]]s helps find their crossings, and convex hulls are part of the measurement of boat hulls. And in the study of animal behavior, convex hulls are used in a standard definition of the [[home range]].
 
===Mathematics===
[[File:Tverberg heptagon.svg|thumb|upright|Partition of seven points into three subsets with intersecting convex hulls, guaranteed to exist for any seven points in the plane by [[Tverberg's theorem]]]]
[[Newton polygon]]s of univariate [[polynomial]]s and [[Newton polytope]]s of multivariate polynomials are convex hulls of points derived from the exponents of the terms in the polynomial, and can be used to analyze the [[asymptotic analysis|asymptotic]] behavior of the polynomial and the valuations of its roots.<ref>{{harvtxt|Artin|1967}}; {{harvtxt|Gel'fand|Kapranov|Zelevinsky|1994}}</ref> Convex hulls and polynomials also come together in the [[Gauss–Lucas theorem]], according to which the [[Zero of a function|roots]] of the derivative of a polynomial all lie within the convex hull of the roots of the polynomial.{{sfnp|Prasolov|2004}}
 
[[File:Tverberg heptagon.svg|thumb|upright|Partition of seven points into three subsets with intersecting convex hulls, guaranteed to exist for any seven points in the plane by [[Tverberg's theorem]]]]
In [[Spectral theory|spectral analysis]], the [[numerical range]] of a [[normal matrix]] is the convex hull of its [[eigenvalue]]s.{{sfnp|Johnson|1976}}
The [[Russo–Dye theorem]] describes the convex hulls of [[unitary element]]s in a [[C*-algebra]].{{sfnp|Gardner|1984}}
Line 189 ⟶ 190:
==References==
{{refbegin|30em}}
*{{citation |last=Fan |first=Ky |title=Convex Sets and Their Applications. Summer Lectures 1959. |url=https://books.google.com/books?id=QKkrAAAAYAAJ&pg=PA48 |publisher=Argon national laboratory |year=1959}}
*{{citation
*{{citation |last=Andrew |first=A. M. |doi=10.1016/0020-0190(79)90072-3 |issue=5 |journal=[[Information Processing Letters]] |pages=216–219 |title=Another efficient algorithm for convex hulls in two dimensions |volume=9 |year=1979}}
| last = Andrew | first = A. M.
*{{citation |last=Artin |first=Emil |author-link=Emil Artin |contribution=2.5. Newton's Polygon |contribution-url=https://books.google.com/books?id=VixOGTdZaCQC&pg=PA37 |mr=0237460 |pages=37–43 |publisher=Gordon and Breach |title=Algebraic Numbers and Algebraic Functions |year=1967}}
| doi = 10.1016/0020-0190(79)90072-3
*{{citation |last=Auel |first=Asher |issue=3 |journal=[[Notices of the American Mathematical Society]] |mr=3889348 |pages=330–340 |title=The mathematics of Grace Murray Hopper |url=https://www.ams.org/journals/notices/201903/rnoti-p330.pdf |volume=66 |year=2019 |doi=10.1090/noti1810 |s2cid=76650751}}
| issue = 5
*{{citation |last1=Avis |first1=David |author1-link=David Avis |last2=Bremner |first2=David |last3=Seidel |first3=Raimund |author3-link=Raimund Seidel |doi=10.1016/S0925-7721(96)00023-5 |issue=5–6 |journal=[[Computational Geometry (journal)|Computational Geometry]] |mr=1447243 |pages=265–301 |title=How good are convex hull algorithms? |volume=7 |year=1997}}
| journal = [[Information Processing Letters]]
*{{citation |last1=Bárány |first1=Imre |author1-link=Imre Bárány |last2=Katchalski |first2=Meir |last3=Pach |first3=János |author3-link=János Pach |doi=10.1090/S0002-9939-1982-0663877-X |doi-access=free |issue=1 |journal=[[Proceedings of the American Mathematical Society]] |mr=663877 |pages=109–114 |title=Quantitative Helly-type theorems |volume=86 |year=1982 |jstor=2044407}}
| pages = 216–219
*{{citation |last1=Basch |first1=Julien |last2=Guibas |first2=Leonidas J. |author2-link=Leonidas J. Guibas |last3=Hershberger |first3=John |author3-link=John Hershberger |citeseerx=10.1.1.134.6921 |doi=10.1006/jagm.1998.0988 |issue=1 |journal=[[Journal of Algorithms]] |mr=1670903 |pages=1–28 |title=Data structures for mobile data |volume=31 |year=1999 |s2cid=8013433}}
| title = Another efficient algorithm for convex hulls in two dimensions
*{{citation |last=Birkhoff |first=Garrett |author-link=Garrett Birkhoff |doi=10.2307/1989687 |issue=2 |journal=[[Transactions of the American Mathematical Society]] |mr=1501815 |pages=357–378 |title=Integration of functions with values in a Banach space |volume=38 |year=1935 |jstor=1989687}}
| volume = 9
*{{citation |last=Brown |first=K. Q. |doi=10.1016/0020-0190(79)90074-7 |issue=5 |journal=[[Information Processing Letters]] |pages=223–228 |title=Voronoi diagrams from convex hulls |volume=9 |year=1979 |s2cid=44537056}}
| year = 1979}}
*{{citation |last1=de Berg |first1=M. |author1-link=Mark de Berg |last2=van Kreveld |first2=M. |author2-link=Marc van Kreveld |last3=Overmars |first3=Mark |author3-link=Mark Overmars |last4=Schwarzkopf |first4=O. |author4-link=Otfried Cheong |edition=3rd |publisher=Springer |title=Computational Geometry: Algorithms and Applications |year=2008}}
*{{citation
*{{citation |last=Chan |first=Timothy M. |author-link=Timothy M. Chan |doi=10.1142/S0218195912600096 |issue=4 |journal=[[International Journal of Computational Geometry and Applications]] |mr=2994585 |pages=341–364 |title=Three problems about dynamic convex hulls |volume=22 |year=2012}}
| last = Artin
*{{citation |last1=Chang |first1=J. S. |last2=Yap |first2=C.-K. |doi=10.1007/BF02187692 |issue=2 |journal=[[Discrete & Computational Geometry]] |mr=834056 |pages=155–182 |title=A polynomial solution for the potato-peeling problem |volume=1 |year=1986 |doi-access=free}}
| first = Emil
*{{citation |last=Chazelle |first=Bernard |author-link=Bernard Chazelle |doi=10.1109/TIT.1985.1057060 |issue=4 |journal=[[IEEE Transactions on Information Theory]] |mr=798557 |pages=509–517 |title=On the convex layers of a planar set |volume=31 |year=1985}}
| author-link = Emil Artin
*{{citation |last=Chazelle |first=Bernard |author-link=Bernard Chazelle |citeseerx=10.1.1.113.8709 |doi=10.1007/BF02573985 |issue=1 |journal=[[Discrete & Computational Geometry]] |pages=377–409 |title=An optimal convex hull algorithm in any fixed dimension |url=https://www.cs.princeton.edu/~chazelle/pubs/ConvexHullAlgorithm.pdf |volume=10 |year=1993 |s2cid=26605267}}
| contribution = 2.5. Newton's Polygon
*{{citation |last1=Chen |first1=Qinyu |last2=Wang |first2=Guozhao |date=March 2003 |doi=10.1016/s0167-8396(03)00003-7 |issue=1 |journal=Computer Aided Geometric Design |pages=29–39 |title=A class of Bézier-like curves |volume=20}}
| contribution-url = https://books.google.com/books?id=VixOGTdZaCQC&pg=PA37
*{{citation |last1=Cranston |first1=M. |last2=Hsu |first2=P. |last3=March |first3=P. |issue=1 |journal=[[Annals of Probability]] |jstor=2244202 |mr=972777 |pages=144–150 |title=Smoothness of the convex hull of planar Brownian motion |volume=17 |year=1989 |doi=10.1214/aop/1176991500 |doi-access=free}}
| mr = 0237460
*{{citation |last1=Demaine |first1=Erik D. |author1-link=Erik Demaine |last2=Gassend |first2=Blaise |last3=O'Rourke |first3=Joseph |author3-link=Joseph O'Rourke (professor) |last4=Toussaint |first4=Godfried T. |author4-link=Godfried Toussaint |contribution=All polygons flip finitely ... right? |doi=10.1090/conm/453/08801 |___location=Providence, Rhode Island |mr=2405683 |pages=231–255 |publisher=American Mathematical Society |series=Contemporary Mathematics |title=Surveys on Discrete and Computational Geometry |volume=453 |year=2008 |isbn=978-0-8218-4239-3}}
| pages = 37–43
*{{citation |last=Dines |first=L. L. |author-link=Lloyd Dines |doi=10.2307/2302604 |issue=4 |journal=[[American Mathematical Monthly]] |jstor=2302604 |mr=1524247 |pages=199–209 |title=On convexity |volume=45 |year=1938}}
| publisher = Gordon and Breach
*{{citation |last1=Dirnböck |first1=Hans |last2=Stachel |first2=Hellmuth |author2-link=Hellmuth Stachel |issue=2 |journal=Journal for Geometry and Graphics |mr=1622664 |pages=105–118 |title=The development of the oloid |url=http://www.heldermann-verlag.de/jgg/jgg01_05/jgg0113.pdf |volume=1 |year=1997}}
| title = Algebraic Numbers and Algebraic Functions
*{{citation |last1=Edelsbrunner |first1=Herbert |author1-link=Herbert Edelsbrunner |last2=Kirkpatrick |first2=David G. |author2-link=David G. Kirkpatrick |last3=Seidel |first3=Raimund |author3-link=Raimund Seidel |doi=10.1109/TIT.1983.1056714 |issue=4 |journal=[[IEEE Transactions on Information Theory]] |pages=551–559 |title=On the shape of a set of points in the plane |volume=29 |year=1983}}
| year = 1967
*{{citation |last1=Epstein |first1=D. B. A. |author1-link=David B. A. Epstein |last2=Marden |first2=A. |author2-link=Albert Marden |editor-last=Epstein |editor-first=D. B. A. |editor-link=David B. A. Epstein |contribution=Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces |mr=903852 |pages=113–253 |publisher=Cambridge University Press |___location=Cambridge |series=London Mathematical Society Lecture Note Series |title=Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) |volume=111 |year=1987}}
}}
*{{citation |last1=Escobar |first1=Laura |last2=Kaveh |first2=Kiumars |date=September 2020 |issue=8 |journal=Notices of the American Mathematical Society |pages=1116–1123 |title=Convex polytopes, algebraic geometry, and combinatorics |url=https://www.ams.org/journals/notices/202008/rnoti-p1116.pdf |volume=67 |doi=10.1090/noti2137 |s2cid=221659506}}
*{{citation
*{{citation |last=Fultz |first=Brent |date=April 2020 |doi=10.1017/9781108641449 |page=55 |publisher=Cambridge University Press |title=Phase Transitions in Materials |isbn=9781108641449 |url=https://books.google.com/books?id=AkbhDwAAQBAJ&pg=PA55}}
| last = Auel
*{{citation |last=Gardner |first=L. Terrell |doi=10.2307/2044692 |issue=1 |journal=[[Proceedings of the American Mathematical Society]] |mr=722439 |page=171 |title=An elementary proof of the Russo-Dye theorem |volume=90 |year=1984 |jstor=2044692 |s2cid=119501393}}
| first = Asher
*{{citation |last1=Gel'fand |first1=I. M. |author1-link=Israel Gelfand |last2=Kapranov |first2=M. M. |author2-link=Mikhail Kapranov |last3=Zelevinsky |first3=A. V. |author3-link=Andrei Zelevinsky |contribution=6. Newton Polytopes and Chow Polytopes |doi=10.1007/978-0-8176-4771-1 |isbn=0-8176-3660-9 |mr=1264417 |pages=193–213 |publisher=Birkhäuser |series=Mathematics: Theory & Applications |title=Discriminants, Resultants, and Multidimensional Determinants |year=1994}}
| issue = 3
*{{citation |last1=Getz |first1=Wayne M. |last2=Wilmers |first2=Christopher C. |doi=10.1111/j.0906-7590.2004.03835.x |issue=4 |journal=[[Ecography]] |pages=489–505 |publisher=Wiley |title=A local nearest-neighbor convex-hull construction of home ranges and utilization distributions |url=https://www.cnr.berkeley.edu/~getz/Reprints04/Getz&WilmersEcoG_SF_04.pdf |volume=27 |year=2004 |bibcode=2004Ecogr..27..489G |s2cid=14592779}}
| journal = [[Notices of the American Mathematical Society]]
*{{citation |last=Gibbs |first=Willard J. |author-link=Josiah Willard Gibbs |journal=Transactions of the Connecticut Academy of Arts and Sciences |pages=382–404 |title=A method of geometrical representation of the thermodynamic properties of substances by means of surfaces |volume=2 |year=1873}}; reprinted in ''[https://archive.org/details/scientificpaper00gibbgoog The Scientific Papers of J. Willard Gibbs, Vol. I: Thermodynamics]'', Longmans, Green, & Co., 1906, [https://archive.org/details/scientificpaper00gibbgoog/page/n67 pp. 33–54]
| mr = 3889348
*{{citation |last1=Graham |first1=Ronald L. |author1-link=Ronald Graham |last2=Yao |first2=F. Frances |author2-link=Frances Yao |doi=10.1016/0196-6774(83)90013-5 |issue=4 |journal=[[Journal of Algorithms]] |mr=729228 |pages=324–331 |title=Finding the convex hull of a simple polygon |volume=4 |year=1983}}
| pages = 330–340
*{{citation |last=Grünbaum |first=Branko |author-link=Branko Grünbaum |edition=2nd |isbn=9780387004242 |publisher=Springer |series=Graduate Texts in Mathematics |title=Convex Polytopes |title-link=Convex Polytopes |volume=221 |year=2003}}
| title = The mathematics of Grace Murray Hopper
*{{citation |last=Gustin |first=William |doi=10.1090/S0002-9904-1947-08787-5 |journal=[[Bulletin of the American Mathematical Society]] |mr=20800 |pages=299–301 |title=On the interior of the convex hull of a Euclidean set |volume=53 |year=1947 |issue=4 |doi-access=free}}
| url = https://www.ams.org/journals/notices/201903/rnoti-p330.pdf
*{{citation |last=Harris |first=Bernard |contribution=Mathematical models for statistical decision theory |contribution-url=https://apps.dtic.mil/dtic/tr/fulltext/u2/737250.pdf |mr=0356305 |pages=369–389 |title=Optimizing methods in statistics (Proc. Sympos., Ohio State Univ., Columbus, Ohio, 1971) |year=1971 |access-date=2020-01-01 |archive-date=2021-02-28 |archive-url=https://web.archive.org/web/20210228072623/https://apps.dtic.mil/dtic/tr/fulltext/u2/737250.pdf |url-status=dead}}
| volume = 66
*{{citation |last=Hautier |first=Geoffroy |editor1-last=Atahan-Evrenk |editor1-first=Sule |editor2-last=Aspuru-Guzik |editor2-first=Alan |contribution=Data mining approaches to high-throughput crystal structure and compound prediction |doi=10.1007/128_2013_486 |pages=139–179 |pmid=24287952 |publisher=Springer International Publishing |series=Topics in Current Chemistry |title=Prediction and Calculation of Crystal Structures: Methods and Applications |volume=345 |year=2014 |isbn=978-3-319-05773-6}}; see [https://books.google.com/books?id=9nu5BQAAQBAJ&pg=PA143 p. 143]
| year = 2019
*{{citation |last=Herrlich |first=Horst |author-link=Horst Herrlich |department=Proceedings of the Symposium on General Topology and Applications (Oxford, 1989) |doi=10.1016/0166-8641(92)90092-E |issue=1–3 |journal=[[Topology and Its Applications]] |mr=1173256 |pages=181–187 |title=Hyperconvex hulls of metric spaces |volume=44 |year=1992 |doi-access=free}}
| doi = 10.1090/noti1810
*{{citation |last=Johnson |first=Charles R. |author-link=Charles Royal Johnson |doi=10.1016/0024-3795(76)90080-x |issue=1 |journal=[[Linear Algebra and Its Applications]] |mr=460358 |pages=89–94 |title=Normality and the numerical range |volume=15 |year=1976 |doi-access=free}}
| s2cid = 76650751
*{{citation |last1=Kashiwabara |first1=Kenji |last2=Nakamura |first2=Masataka |last3=Okamoto |first3=Yoshio |citeseerx=10.1.1.14.4965 |doi=10.1016/j.comgeo.2004.05.001 |issue=2 |journal=[[Computational Geometry (journal)|Computational Geometry]] |mr=2107032 |pages=129–144 |title=The affine representation theorem for abstract convex geometries |volume=30 |year=2005}}
}}
*{{citation |last=Katoh |first=Naoki |journal=IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences |pages=321–329 |title=Bicriteria network optimization problems |volume=E75-A |year=1992}}
*{{citation
*{{citation |last1=Kernohan |first1=Brian J. |last2=Gitzen |first2=Robert A. |last3=Millspaugh |first3=Joshua J. |editor1-last=Millspaugh |editor1-first=Joshua |editor2-last=Marzluff |editor2-first=John M. |contribution=Analysis of animal space use and movements |isbn=9780080540221 |publisher=Academic Press |title=Radio Tracking and Animal Populations |year=2001}}
| last1 = Avis | first1 = David | author1-link = David Avis
*{{citation |last1=Kim |first1=Sooran |last2=Kim |first2=Kyoo |last3=Koo |first3=Jahyun |last4=Lee |first4=Hoonkyung |last5=Min |first5=Byung Il |last6=Kim |first6=Duck Young |bibcode=2019NatSR...920253K |date=December 2019 |doi=10.1038/s41598-019-56497-6 |issue=1 |journal=Scientific Reports |page=20253 |pmc=6934831 |pmid=31882982 |title=Pressure-induced phase transitions and superconductivity in magnesium carbides |volume=9}}
| last2 = Bremner | first2 = David
*{{citation |last=Kirkpatrick |first=K. A. |arxiv=quant-ph/0305068 |doi=10.1007/s10702-006-1852-1 |issue=1 |journal=[[Foundations of Physics Letters]] |pages=95–102 |title=The Schrödinger–HJW theorem |volume=19 |year=2006 |bibcode=2006FoPhL..19...95K |s2cid=15995449}}
| last3 = Seidel | first3 = Raimund | author3-link = Raimund Seidel
*{{citation |last=Kiselman |first=Christer O. |doi=10.1090/S0002-9947-02-02915-X |issue=5 |journal=[[Transactions of the American Mathematical Society]] |mr=1881029 |pages=2035–2053 |title=A semigroup of operators in convexity theory |volume=354 |year=2002 |doi-access=free}}
| doi = 10.1016/S0925-7721(96)00023-5
*{{citation |last=Knuth |first=Donald E. |author-link=Donald Knuth |doi=10.1007/3-540-55611-7 |isbn=3-540-55611-7 |___location=Heidelberg |mr=1226891 |publisher=Springer-Verlag |series=Lecture Notes in Computer Science |title=Axioms and Hulls |url=http://www-cs-faculty.stanford.edu/~uno/aah.html |volume=606 |year=1992 |s2cid=5452191 |access-date=2011-09-15 |archive-date=2017-06-20 |archive-url=https://web.archive.org/web/20170620062425/http://www-cs-faculty.stanford.edu/~uno/aah.html |url-status=dead}}
| issue = 5–6
*{{citation |last=Kőnig |first=Dénes |author-link=Dénes Kőnig |date=December 1922 |doi=10.1007/bf01215899 |issue=1 |journal=[[Mathematische Zeitschrift]] |pages=208–210 |title=Über konvexe Körper |volume=14 |s2cid=128041360}}; see also review by [[Hans Rademacher]] (1922), {{JFM|48.0835.01}}
| journal = [[Computational Geometry (journal)|Computational Geometry]]
*{{citation |last1=Krein |first1=Mark |author1-link=Mark Krein |last2=Milman |first2=David |author2-link=David Milman |journal=[[Studia Mathematica]] |pages=133–138 |title=On extreme points of regular convex sets |url=https://eudml.org/doc/219061 |volume=9 |year=1940 |doi=10.4064/sm-9-1-133-138 |doi-access=free}}
| mr = 1447243
*{{citation |last1=Krein |first1=M. |author1-link=Mark Krein |last2=Šmulian |first2=V. |doi=10.2307/1968735 |journal=[[Annals of Mathematics]] |series=Second Series |jstor=1968735 |mr=2009 |pages=556–583 |title=On regularly convex sets in the space conjugate to a Banach space |volume=41 |year=1940 |issue=3 |hdl=10338.dmlcz/100106 |hdl-access=free}}
| pages = 265–301
*{{citation |last=Laurentini |first=A. |doi=10.1109/34.273735 |issue=2 |journal=IEEE Transactions on Pattern Analysis and Machine Intelligence |pages=150–162 |title=The visual hull concept for silhouette-based image understanding |volume=16 |year=1994}}
| title = How good are convex hull algorithms?
*{{citation |last=Lay |first=Steven R. |isbn=0-471-09584-2 |mr=655598 |publisher=John Wiley & Sons |title=Convex Sets and their Applications |year=1982}}
| volume = 7
*{{citation |last=Lee |first=D. T. |author-link=Der-Tsai Lee |doi=10.1007/BF00993195 |issue=2 |journal=International Journal of Computer and Information Sciences |mr=724699 |pages=87–98 |title=On finding the convex hull of a simple polygon |volume=12 |year=1983 |s2cid=28600832}}
| year = 1997}}
*{{citation |last=Mason |first=Herbert B. |page=698 |title=Encyclopaedia of Ships and Shipping |url=https://books.google.com/books?id=d3gDAAAAYAAJ&pg=PA698 |year=1908}}
*{{citation
*{{citation |last1=McCallum |first1=Duncan |last2=Avis |first2=David |author2-link=David Avis |doi=10.1016/0020-0190(79)90069-3 |issue=5 |journal=[[Information Processing Letters]] |mr=552534 |pages=201–206 |title=A linear algorithm for finding the convex hull of a simple polygon |volume=9 |year=1979}}
| last1 = Bárány | first1 = Imre | author1-link = Imre Bárány
*{{citation |last=Newton |first=Isaac |author-link=Isaac Newton |date=October 24, 1676 |publisher=University of Oxford |title=Letter to Henry Oldenburg |url=https://www.newtonproject.ox.ac.uk/view/texts/normalized/NATP00196 |work=The [[Newton Project]]}}
| last2 = Katchalski | first2 = Meir
*{{citation |last=Nicola |first=Piercarlo |contribution=General Competitive Equilibrium |doi=10.1007/978-3-662-04238-0_16 |pages=197–215 |publisher=Springer |title=Mainstream Mathematical Economics in the 20th Century |year=2000 |isbn=978-3-642-08638-0}}
| last3 = Pach | first3 = János | author3-link = János Pach
*{{citation |last1=Nilsen |first1=Erlend B. |last2=Pedersen |first2=Simen |last3=Linnell |first3=John D. C. |year=2008 |doi=10.1007/s11284-007-0421-9 |issue=3 |journal=Ecological Research |pages=635–639 |title=Can minimum convex polygon home ranges be used to draw biologically meaningful conclusions? |volume=23 |bibcode=2008EcoR...23..635N |s2cid=30843551}}
| doi = 10.1090/S0002-9939-1982-0663877-X | doi-access = free
*{{citation |last=Oberman |first=Adam M. |doi=10.1090/S0002-9939-07-08887-9 |issue=6 |journal=[[Proceedings of the American Mathematical Society]] |mr=2286077 |pages=1689–1694 |title=The convex envelope is the solution of a nonlinear obstacle problem |volume=135 |year=2007 |doi-access=free}}
| issue = 1
*{{citation |last=Okon |first=T. |doi=10.4171/ZAA/952 |issue=2 |journal=Zeitschrift für Analysis und ihre Anwendungen |mr=1768994 |pages=303–314 |title=Choquet theory in metric spaces |volume=19 |year=2000 |doi-access=free}}
| journal = [[Proceedings of the American Mathematical Society]]
*{{citation |last1=Ottmann |first1=T. |last2=Soisalon-Soininen |first2=E. |last3=Wood |first3=Derick |author3-link=Derick Wood |doi=10.1016/0020-0255(84)90025-2 |issue=3 |journal=[[Information Sciences (journal)|Information Sciences]] |pages=157–171 |title=On the definition and computation of rectilinear convex hulls |volume=33 |year=1984}}
| mr = 663877
*{{citation |last=Prasolov |first=Victor V. |contribution=1.2.1 The Gauss–Lucas theorem |contribution-url=https://books.google.com/books?id=b1a7ye_EjZwC&pg=PA12 |doi=10.1007/978-3-642-03980-5 |isbn=3-540-40714-6 |mr=2082772 |pages=12–13 |publisher=Springer |series=Algorithms and Computation in Mathematics |title=Polynomials |volume=11 |year=2004}}
| pages = 109–114
*{{citation |last=Pulleyblank |first=W. R. |author-link=William R. Pulleyblank |editor1-last=Bachem |editor1-first=Achim |editor2-last=Korte |editor2-first=Bernhard |editor3-last=Grötschel |editor3-first=Martin |contribution=Polyhedral combinatorics |doi=10.1007/978-3-642-68874-4_13 |pages=312–345 |publisher=Springer |title=Mathematical Programming: The State of the Art (XIth International Symposium on Mathematical Programming, Bonn 1982) |year=1983 |isbn=978-3-642-68876-8}}
| title = Quantitative Helly-type theorems
*{{citation |last=Rappoport |first=Ari |doi=10.1111/1467-8659.1140235 |issue=4 |journal=Computer Graphics Forum |pages=235–240 |title=An efficient adaptive algorithm for constructing the convex differences tree of a simple polygon |volume=11 |year=1992 |s2cid=20137707}}
| volume = 86
*{{citation |last=Reay |first=John R. |doi=10.1007/BF02760885 |doi-access=free |issue=3 |journal=[[Israel Journal of Mathematics]] |mr=570883 |pages=238–244 (1980) |title=Several generalizations of Tverberg's theorem |volume=34 |year=1979 |s2cid=121352925}}
| year = 1982
*{{citation |last1=Rieffel |first1=Eleanor G. |author1-link=Eleanor Rieffel |last2=Polak |first2=Wolfgang H. |isbn=978-0-262-01506-6 |pages=215–216 |publisher=MIT Press |title=Quantum Computing: A Gentle Introduction |title-link=Quantum Computing: A Gentle Introduction |year=2011}}
| jstor = 2044407}}
*{{citation |last=Rockafellar |first=R. Tyrrell |author-link=R. Tyrrell Rockafellar |mr=0274683 |publisher=Princeton University Press |___location=Princeton, N.J. |series=Princeton Mathematical Series |title=Convex Analysis |volume=28 |year=1970}}
*{{citation
*{{citation |last=Rossi |first=Hugo |author-link=Hugo Rossi |doi=10.2307/1970292 |journal=[[Annals of Mathematics]] |jstor=1970292 |mr=133479 |pages=470–493 |series=Second Series |title=Holomorphically convex sets in several complex variables |volume=74 |year=1961 |issue=3}}
| last1 = Basch | first1 = Julien
*{{citation |last1=Rousseeuw |first1=Peter J. |author1-link=Peter Rousseeuw |last2=Ruts |first2=Ida |last3=Tukey |first3=John W. |author3-link=John Tukey |doi=10.1080/00031305.1999.10474494 |issue=4 |journal=[[The American Statistician]] |pages=382–387 |title=The bagplot: A bivariate boxplot |volume=53 |year=1999}}
| last2 = Guibas | first2 = Leonidas J. | author2-link = Leonidas J. Guibas
*{{citation |last=Sakuma |first=Itsuo |doi=10.1016/0022-0531(77)90095-3 |issue=1 |journal=[[Journal of Economic Theory]] |pages=223–227 |title=Closedness of convex hulls |volume=14 |year=1977}}
| last3 = Hershberger | first3 = John | author3-link = John Hershberger
*{{citation |last=Schneider |first=Rolf |author-link=Rolf Schneider |doi=10.1017/CBO9780511526282 |isbn=0-521-35220-7 |___location=Cambridge |mr=1216521 |publisher=Cambridge University Press |series=Encyclopedia of Mathematics and its Applications |title=Convex Bodies: The Brunn–Minkowski Theory |url=https://archive.org/details/convexbodiesbrun0000schn |volume=44 |year=1993}}
| citeseerx = 10.1.1.134.6921
*{{citation |last=Seaton |first=Katherine A. |arxiv=1603.08409 |doi=10.1080/17513472.2017.1318512 |issue=4 |journal=[[Journal of Mathematics and the Arts]] |mr=3765242 |pages=187–202 |title=Sphericons and D-forms: a crocheted connection |volume=11 |year=2017 |s2cid=84179479}}
| doi = 10.1006/jagm.1998.0988
*{{citation |last=Sedykh |first=V. D. |issue=6 |journal=Trudy Seminara imeni I. G. Petrovskogo |mr=630708 |pages=239–256 |title=Structure of the convex hull of a space curve |year=1981}}, translated in ''Journal of Soviet Mathematics'' 33 (4): 1140–1153, 1986, {{doi|10.1007/BF01086114}}
| issue = 1
*{{citation |last=Sontag |first=Eduardo D. |author-link=Eduardo D. Sontag |issue=1 |journal=[[Pacific Journal of Mathematics]] |mr=644949 |pages=183–201 |title=Remarks on piecewise-linear algebra |url=https://projecteuclid.org/euclid.pjm/1102734396 |volume=98 |year=1982 |doi=10.2140/pjm.1982.98.183 |s2cid=18446330 |doi-access=free}}
| journal = [[Journal of Algorithms]]
*{{citation |last=Steinitz |first=E. |author-link=Ernst Steinitz |doi=10.1515/crll.1914.144.1 |journal=[[Crelle's Journal|Journal für die Reine und Angewandte Mathematik]] |mr=1580890 |pages=1–40 |title=Bedingt konvergente Reihen und konvexe Systeme. (Fortsetzung) |volume=1914 |year=1914 |issue=144 |s2cid=122998337}}
| mr = 1670903
*{{citation |last=Talman |first=Louis A. |issue=1–2 |journal=Kōdai Mathematical Seminar Reports |mr=463985 |pages=62–70 |title=Fixed points for condensing multifunctions in metric spaces with convex structure |url=https://projecteuclid.org/euclid.kmj/1138833572 |volume=29 |year=1977}}
| pages = 1–28
*{{citation |last=Toussaint |first=Godfried |author-link=Godfried Toussaint |citeseerx=10.1.1.155.5671 |contribution=Solving geometric problems with the rotating calipers |title=Proceedings of IEEE MELECON '83, Athens |year=1983}}
| title = Data structures for mobile data
*{{citation |last=Toussaint |first=Godfried |author-link=Godfried Toussaint |contribution=An optimal algorithm for computing the relative convex hull of a set of points in a polygon |pages=853–856 |publisher=North-Holland |title=Proceedings of EURASIP, Signal Processing III: Theories and Applications, Part 2 |year=1986}}
| volume = 31
*{{citation |last=Weeks |first=Jeffrey R. |author-link=Jeffrey Weeks (mathematician) |doi=10.1016/0166-8641(93)90032-9 |issue=2 |journal=[[Topology and Its Applications]] |mr=1241189 |pages=127–149 |title=Convex hulls and isometries of cusped hyperbolic 3-manifolds |volume=52 |year=1993 |doi-access=free}}
| year = 1999| s2cid = 8013433
*{{citation |last=Westermann |first=L. R. J. |doi=10.1016/1385-7258(76)90065-2 |issue=2 |journal=[[Indagationes Mathematicae]] |mr=0404097 |pages=179–184 |title=On the hull operator |volume=38 |year=1976 |doi-access=free}}
}}
*{{citation |last=White |first=F. Puryer |date=April 1923 |issue=68 |journal=Science Progress in the Twentieth Century |jstor=43432008 |pages=517–526 |title=Pure mathematics |volume=17}}
*{{citation
*{{citation |last=Whitley |first=Robert |doi=10.2307/2046536 |issue=2 |journal=[[Proceedings of the American Mathematical Society]] |mr=835903 |pages=376–377 |title=The Kreĭn-Šmulian theorem |volume=97 |year=1986 |jstor=2046536}}
| last = Birkhoff | first = Garrett | author-link = Garrett Birkhoff
*{{citation |last1=Williams |first1=Jason |last2=Rossignac |first2=Jarek |editor1-last=Kobbelt |editor1-first=Leif |editor2-last=Shapiro |editor2-first=Vadim |contribution=Tightening: curvature-limiting morphological simplification |doi=10.1145/1060244.1060257 |hdl=1853/3736 |pages=107–112 |publisher=ACM |title=Proceedings of the Tenth ACM Symposium on Solid and Physical Modeling 2005, Cambridge, Massachusetts, USA, June 13-15, 2005 |year=2005 |s2cid=15514388}}
| doi = 10.2307/1989687
*{{citation |last=Worton |first=Bruce J. |doi=10.2307/2533254 |issue=4 |journal=[[Biometrics (journal)|Biometrics]] |jstor=2533254 |pages=1206–1215 |title=A convex hull-based estimator of home-range size |volume=51 |year=1995}}
| issue = 2
| journal = [[Transactions of the American Mathematical Society]]
| mr = 1501815
| pages = 357–378
| title = Integration of functions with values in a Banach space
| volume = 38
| year = 1935| jstor = 1989687 }}
*{{citation
| last = Brown | first = K. Q.
| doi = 10.1016/0020-0190(79)90074-7
| issue = 5
| journal = [[Information Processing Letters]]
| pages = 223–228
| title = Voronoi diagrams from convex hulls
| volume = 9
| year = 1979}}
*{{citation
| last1 = de Berg | first1 = M. | author1-link = Mark de Berg
| last2 = van Kreveld | first2 = M. | author2-link = Marc van Kreveld
| last3 = Overmars | first3 = Mark | author3-link = Mark Overmars
| last4 = Schwarzkopf | first4 = O. | author4-link = Otfried Cheong
| edition = 3rd
| publisher = Springer
| title = Computational Geometry: Algorithms and Applications
| year = 2008}}
*{{citation
| last = Chan | first = Timothy M. | author-link = Timothy M. Chan
| doi = 10.1142/S0218195912600096
| issue = 4
| journal = [[International Journal of Computational Geometry and Applications]]
| mr = 2994585
| pages = 341–364
| title = Three problems about dynamic convex hulls
| volume = 22
| year = 2012}}
*{{citation
| last1 = Chang | first1 = J. S.
| last2 = Yap | first2 = C.-K.
| doi = 10.1007/BF02187692
| issue = 2
| journal = [[Discrete & Computational Geometry]]
| mr = 834056
| pages = 155–182
| title = A polynomial solution for the potato-peeling problem
| volume = 1
| year = 1986| doi-access = free
}}
*{{citation
| last = Chazelle | first = Bernard | author-link = Bernard Chazelle
| doi = 10.1109/TIT.1985.1057060
| issue = 4
| journal = [[IEEE Transactions on Information Theory]]
| mr = 798557
| pages = 509–517
| title = On the convex layers of a planar set
| volume = 31
| year = 1985}}
*{{citation
| last = Chazelle
| first = Bernard
| author-link = Bernard Chazelle
| citeseerx = 10.1.1.113.8709
| doi = 10.1007/BF02573985
| issue = 1
| journal = [[Discrete & Computational Geometry]]
| pages = 377–409
| title = An optimal convex hull algorithm in any fixed dimension
| url = https://www.cs.princeton.edu/~chazelle/pubs/ConvexHullAlgorithm.pdf
| volume = 10
| year = 1993
| s2cid = 26605267
}}
*{{citation
| last1 = Chen | first1 = Qinyu
| last2 = Wang | first2 = Guozhao
| date = March 2003
| doi = 10.1016/s0167-8396(03)00003-7
| issue = 1
| journal = Computer Aided Geometric Design
| pages = 29–39
| title = A class of Bézier-like curves
| volume = 20}}
*{{citation
| last1 = Cranston | first1 = M.
| last2 = Hsu | first2 = P.
| last3 = March | first3 = P.
| issue = 1
| journal = [[Annals of Probability]]
| jstor = 2244202
| mr = 972777
| pages = 144–150
| title = Smoothness of the convex hull of planar Brownian motion
| volume = 17
| year = 1989| doi = 10.1214/aop/1176991500
| doi-access = free
}}
*{{citation
| last1 = Demaine | first1 = Erik D. | author1-link = Erik Demaine
| last2 = Gassend | first2 = Blaise
| last3 = O'Rourke | first3 = Joseph | author3-link = Joseph O'Rourke (professor)
| last4 = Toussaint | first4 = Godfried T. | author4-link = Godfried Toussaint
| contribution = All polygons flip finitely ... right?
| doi = 10.1090/conm/453/08801
| ___location = Providence, Rhode Island
| mr = 2405683
| pages = 231–255
| publisher = American Mathematical Society
| series = Contemporary Mathematics
| title = Surveys on Discrete and Computational Geometry
| volume = 453
| year = 2008}}
*{{citation
| last = Dines | first = L. L. | author-link = Lloyd Dines
| doi = 10.2307/2302604
| issue = 4
| journal = [[American Mathematical Monthly]]
| jstor = 2302604
| mr = 1524247
| pages = 199–209
| title = On convexity
| volume = 45
| year = 1938}}
*{{citation
| last1 = Dirnböck
| first1 = Hans
| last2 = Stachel
| first2 = Hellmuth
| author2-link = Hellmuth Stachel
| issue = 2
| journal = Journal for Geometry and Graphics
| mr = 1622664
| pages = 105–118
| title = The development of the oloid
| url = http://www.heldermann-verlag.de/jgg/jgg01_05/jgg0113.pdf
| volume = 1
| year = 1997
}}
*{{citation
| last1 = Edelsbrunner | first1 = Herbert | author1-link = Herbert Edelsbrunner
| last2 = Kirkpatrick | first2 = David G. | author2-link = David G. Kirkpatrick
| last3 = Seidel | first3 = Raimund | author3-link = Raimund Seidel
| doi = 10.1109/TIT.1983.1056714
| issue = 4
| journal = [[IEEE Transactions on Information Theory]]
| pages = 551–559
| title = On the shape of a set of points in the plane
| volume = 29
| year = 1983}}
*{{citation
| last1 = Epstein | first1 = D. B. A. | author1-link = David B. A. Epstein
| last2 = Marden | first2 = A. | author2-link = Albert Marden
| editor-last = Epstein | editor-first = D. B. A. | editor-link = David B. A. Epstein
| contribution = Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces
| mr = 903852
| pages = 113–253
| publisher = Cambridge University Press | ___location = Cambridge
| series = London Mathematical Society Lecture Note Series
| title = Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)
| volume = 111
| year = 1987}}
*{{citation
| last1 = Escobar
| first1 = Laura
| last2 = Kaveh
| first2 = Kiumars
| date = September 2020
| issue = 8
| journal = Notices of the American Mathematical Society
| pages = 1116–1123
| title = Convex polytopes, algebraic geometry, and combinatorics
| url = https://www.ams.org/journals/notices/202008/rnoti-p1116.pdf
| volume = 67
| doi = 10.1090/noti2137
| s2cid = 221659506
}}
*{{citation
| last = Fultz
| first = Brent
| date = April 2020
| doi = 10.1017/9781108641449
| page = 55
| publisher = Cambridge University Press
| title = Phase Transitions in Materials
| isbn = 9781108641449
| url = https://books.google.com/books?id=AkbhDwAAQBAJ&pg=PA55
}}
*{{citation
| last = Gardner | first = L. Terrell
| doi = 10.2307/2044692
| issue = 1
| journal = [[Proceedings of the American Mathematical Society]]
| mr = 722439
| page = 171
| title = An elementary proof of the Russo-Dye theorem
| volume = 90
| year = 1984| jstor = 2044692
| s2cid = 119501393
}}
*{{citation
| last1 = Gel'fand | first1 = I. M. | author1-link = Israel Gelfand
| last2 = Kapranov | first2 = M. M. | author2-link = Mikhail Kapranov
| last3 = Zelevinsky | first3 = A. V. | author3-link = Andrei Zelevinsky
| contribution = 6. Newton Polytopes and Chow Polytopes
| doi = 10.1007/978-0-8176-4771-1
| isbn = 0-8176-3660-9
| mr = 1264417
| pages = 193–213
| publisher = Birkhäuser
| series = Mathematics: Theory & Applications
| title = Discriminants, Resultants, and Multidimensional Determinants
| year = 1994}}
*{{citation
| last1 = Getz
| first1 = Wayne M.
| last2 = Wilmers
| first2 = Christopher C.
| doi = 10.1111/j.0906-7590.2004.03835.x
| issue = 4
| journal = [[Ecography]]
| pages = 489–505
| publisher = Wiley
| title = A local nearest-neighbor convex-hull construction of home ranges and utilization distributions
| url = https://www.cnr.berkeley.edu/~getz/Reprints04/Getz&WilmersEcoG_SF_04.pdf
| volume = 27
| year = 2004
| s2cid = 14592779
}}
*{{citation
| last = Gibbs | first = Willard J. | author-link = Josiah Willard Gibbs
| journal = Transactions of the Connecticut Academy of Arts and Sciences
| pages = 382–404
| title = A method of geometrical representation of the thermodynamic properties of substances by means of surfaces
| volume = 2
| year = 1873}}; reprinted in ''[https://archive.org/details/scientificpaper00gibbgoog The Scientific Papers of J. Willard Gibbs, Vol. I: Thermodynamics]'', Longmans, Green, & Co., 1906, [https://archive.org/details/scientificpaper00gibbgoog/page/n67 pp. 33–54]
*{{citation
| last1 = Graham | first1 = Ronald L. | author1-link = Ronald Graham
| last2 = Yao | first2 = F. Frances | author2-link = Frances Yao
| doi = 10.1016/0196-6774(83)90013-5
| issue = 4
| journal = [[Journal of Algorithms]]
| mr = 729228
| pages = 324–331
| title = Finding the convex hull of a simple polygon
| volume = 4
| year = 1983}}
*{{citation
| last = Grünbaum | first = Branko | author-link = Branko Grünbaum
| edition = 2nd
| isbn = 9780387004242
| publisher = Springer
| series = Graduate Texts in Mathematics
| title = Convex Polytopes
| title-link = Convex Polytopes
| volume = 221
| year = 2003}}
*{{citation
| last = Gustin | first = William
| doi = 10.1090/S0002-9904-1947-08787-5
| journal = [[Bulletin of the American Mathematical Society]]
| mr = 20800
| pages = 299–301
| title = On the interior of the convex hull of a Euclidean set
| volume = 53
| year = 1947| issue = 4
| doi-access = free
}}
*{{citation
| last = Harris
| first = Bernard
| contribution = Mathematical models for statistical decision theory
| contribution-url = https://apps.dtic.mil/dtic/tr/fulltext/u2/737250.pdf
| mr = 0356305
| pages = 369–389
| title = Optimizing methods in statistics (Proc. Sympos., Ohio State Univ., Columbus, Ohio, 1971)
| year = 1971
}}
*{{citation
| last = Hautier | first = Geoffroy
| editor1-last = Atahan-Evrenk | editor1-first = Sule
| editor2-last = Aspuru-Guzik | editor2-first = Alan
| contribution = Data mining approaches to high-throughput crystal structure and compound prediction
| doi = 10.1007/128_2013_486
| pages = 139–179
| pmid = 24287952
| publisher = Springer International Publishing
| series = Topics in Current Chemistry
| title = Prediction and Calculation of Crystal Structures: Methods and Applications
| volume = 345
| year = 2014}}; see [https://books.google.com/books?id=9nu5BQAAQBAJ&pg=PA143 p. 143]
*{{citation
| last = Herrlich | first = Horst | author-link = Horst Herrlich
| department = Proceedings of the Symposium on General Topology and Applications (Oxford, 1989)
| doi = 10.1016/0166-8641(92)90092-E
| issue = 1–3
| journal = [[Topology and Its Applications]]
| mr = 1173256
| pages = 181–187
| title = Hyperconvex hulls of metric spaces
| volume = 44
| year = 1992| doi-access = free
}}
*{{citation
| last = Johnson | first = Charles R. | author-link = Charles Royal Johnson
| doi = 10.1016/0024-3795(76)90080-x
| issue = 1
| journal = [[Linear Algebra and Its Applications]]
| mr = 460358
| pages = 89–94
| title = Normality and the numerical range
| volume = 15
| year = 1976| doi-access = free
}}
*{{citation
| last1 = Kashiwabara | first1 = Kenji
| last2 = Nakamura | first2 = Masataka
| last3 = Okamoto | first3 = Yoshio
| citeseerx = 10.1.1.14.4965
| doi = 10.1016/j.comgeo.2004.05.001
| issue = 2
| journal = [[Computational Geometry (journal)|Computational Geometry]]
| mr = 2107032
| pages = 129–144
| title = The affine representation theorem for abstract convex geometries
| volume = 30
| year = 2005}}
*{{citation
| last = Katoh | first = Naoki
| journal = IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences
| pages = 321–329
| title = Bicriteria network optimization problems
| volume = E75-A
| year = 1992}}
*{{citation
| last1 = Kernohan | first1 = Brian J.
| last2 = Gitzen | first2 = Robert A.
| last3 = Millspaugh | first3 = Joshua J.
| editor1-last = Millspaugh | editor1-first = Joshua
| editor2-last = Marzluff | editor2-first = John M.
| contribution = Analysis of animal space use and movements
| isbn = 9780080540221
| publisher = Academic Press
| title = Radio Tracking and Animal Populations
| year = 2001}}
*{{citation
| last1 = Kim | first1 = Sooran
| last2 = Kim | first2 = Kyoo
| last3 = Koo | first3 = Jahyun
| last4 = Lee | first4 = Hoonkyung
| last5 = Min | first5 = Byung Il
| last6 = Kim | first6 = Duck Young
| bibcode = 2019NatSR...920253K
| date = December 2019
| doi = 10.1038/s41598-019-56497-6
| issue = 1
| journal = Scientific Reports
| page = 20253
| pmc = 6934831 | pmid = 31882982
| title = Pressure-induced phase transitions and superconductivity in magnesium carbides
| volume = 9}}
*{{citation
| last = Kirkpatrick | first = K. A.
| arxiv = quant-ph/0305068
| doi = 10.1007/s10702-006-1852-1
| issue = 1
| journal = [[Foundations of Physics Letters]]
| pages = 95–102
| title = The Schrödinger–HJW theorem
| volume = 19
| year = 2006| bibcode = 2006FoPhL..19...95K
| s2cid = 15995449
}}
*{{citation
| last = Kiselman | first = Christer O.
| doi = 10.1090/S0002-9947-02-02915-X
| issue = 5
| journal = [[Transactions of the American Mathematical Society]]
| mr = 1881029
| pages = 2035–2053
| title = A semigroup of operators in convexity theory
| volume = 354
| year = 2002| doi-access = free
}}
*{{citation
| last = Knuth
| first = Donald E.
| author-link = Donald Knuth
| doi = 10.1007/3-540-55611-7
| isbn = 3-540-55611-7
| ___location = Heidelberg
| mr = 1226891
| publisher = Springer-Verlag
| series = Lecture Notes in Computer Science
| title = Axioms and Hulls
| url = http://www-cs-faculty.stanford.edu/~uno/aah.html
| volume = 606
| year = 1992
| s2cid = 5452191
| access-date = 2011-09-15
| archive-date = 2017-06-20
| archive-url = https://web.archive.org/web/20170620062425/http://www-cs-faculty.stanford.edu/~uno/aah.html
| url-status = dead
}}
*{{citation
| last = Kőnig | first = Dénes | author-link = Dénes Kőnig
| date = December 1922
| doi = 10.1007/bf01215899
| issue = 1
| journal = [[Mathematische Zeitschrift]]
| pages = 208–210
| title = Über konvexe Körper
| volume = 14| s2cid = 128041360 }}; see also review by [[Hans Rademacher]] (1922), {{JFM|48.0835.01}}
*{{citation
| last1 = Krein
| first1 = Mark
| author1-link = Mark Krein
| last2 = Milman
| first2 = David
| author2-link = David Milman
| journal = [[Studia Mathematica]]
| pages = 133–138
| title = On extreme points of regular convex sets
| url = https://eudml.org/doc/219061
| volume = 9
| year = 1940
| doi = 10.4064/sm-9-1-133-138
| doi-access = free
}}
*{{citation
| last1 = Krein | first1 = M. | author1-link = Mark Krein
| last2 = Šmulian | first2 = V.
| doi = 10.2307/1968735
| journal = [[Annals of Mathematics]] | series = Second Series
| jstor = 1968735
| mr = 2009
| pages = 556–583
| title = On regularly convex sets in the space conjugate to a Banach space
| volume = 41
| year = 1940| issue = 3 | hdl = 10338.dmlcz/100106
| hdl-access = free
}}
*{{citation
| last = Laurentini | first = A.
| doi = 10.1109/34.273735
| issue = 2
| journal = IEEE Transactions on Pattern Analysis and Machine Intelligence
| pages = 150–162
| title = The visual hull concept for silhouette-based image understanding
| volume = 16
| year = 1994}}
*{{citation
| last = Lay | first = Steven R.
| isbn = 0-471-09584-2
| mr = 655598
| publisher = John Wiley & Sons
| title = Convex Sets and their Applications
| year = 1982}}
*{{citation
| last = Lee | first = D. T. | author-link = Der-Tsai Lee
| doi = 10.1007/BF00993195
| issue = 2
| journal = International Journal of Computer and Information Sciences
| mr = 724699
| pages = 87–98
| title = On finding the convex hull of a simple polygon
| volume = 12
| year = 1983| s2cid = 28600832 }}
*{{citation
| last = Mason
| first = Herbert B.
| page = 698
| title = Encyclopaedia of Ships and Shipping
| url = https://books.google.com/books?id=d3gDAAAAYAAJ&pg=PA698
| year = 1908
}}
*{{citation
| last1 = McCallum | first1 = Duncan
| last2 = Avis | first2 = David | author2-link = David Avis
| doi = 10.1016/0020-0190(79)90069-3
| issue = 5
| journal = [[Information Processing Letters]]
| mr = 552534
| pages = 201–206
| title = A linear algorithm for finding the convex hull of a simple polygon
| volume = 9
| year = 1979}}
*{{citation
| last = Newton
| first = Isaac
| author-link = Isaac Newton
| date = October 24, 1676
| publisher = University of Oxford
| title = Letter to Henry Oldenburg
| url = https://www.newtonproject.ox.ac.uk/view/texts/normalized/NATP00196
| work = The Newton Project
}}
*{{citation
| last = Nicola | first = Piercarlo
| contribution = General Competitive Equilibrium
| doi = 10.1007/978-3-662-04238-0_16
| pages = 197–215
| publisher = Springer
| title = Mainstream Mathematical Economics in the 20th Century
| year = 2000}}
*{{citation
| last1 = Nilsen | first1 = Erlend B.
| last2 = Pedersen | first2 = Simen
| last3 = Linnell | first3 = John D. C.
| year = 2008
| doi = 10.1007/s11284-007-0421-9
| issue = 3
| journal = Ecological Research
| pages = 635–639
| title = Can minimum convex polygon home ranges be used to draw biologically meaningful conclusions?
| volume = 23| bibcode = 2008EcoR...23..635N
| s2cid = 30843551
}}
*{{citation
| last = Oberman | first = Adam M.
| doi = 10.1090/S0002-9939-07-08887-9
| issue = 6
| journal = [[Proceedings of the American Mathematical Society]]
| mr = 2286077
| pages = 1689–1694
| title = The convex envelope is the solution of a nonlinear obstacle problem
| volume = 135
| year = 2007| doi-access = free
}}
*{{citation
| last = Okon | first = T.
| doi = 10.4171/ZAA/952
| issue = 2
| journal = Zeitschrift für Analysis und ihre Anwendungen
| mr = 1768994
| pages = 303–314
| title = Choquet theory in metric spaces
| volume = 19
| year = 2000| doi-access = free
}}
*{{citation
| last1 = Ottmann | first1 = T.
| last2 = Soisalon-Soininen | first2 = E.
| last3 = Wood | first3 = Derick | author3-link = Derick Wood
| doi = 10.1016/0020-0255(84)90025-2
| issue = 3
| journal = [[Information Sciences (journal)|Information Sciences]]
| pages = 157–171
| title = On the definition and computation of rectilinear convex hulls
| volume = 33
| year = 1984}}
*{{citation
| last = Prasolov
| first = Victor V.
| contribution = 1.2.1 The Gauss–Lucas theorem
| contribution-url = https://books.google.com/books?id=b1a7ye_EjZwC&pg=PA12
| doi = 10.1007/978-3-642-03980-5
| isbn = 3-540-40714-6
| mr = 2082772
| pages = 12–13
| publisher = Springer
| series = Algorithms and Computation in Mathematics
| title = Polynomials
| volume = 11
| year = 2004
}}
*{{citation
| last = Pulleyblank | first = W. R. | author-link = William R. Pulleyblank
| editor1-last = Bachem | editor1-first = Achim
| editor2-last = Korte | editor2-first = Bernhard
| editor3-last = Grötschel | editor3-first = Martin
| contribution = Polyhedral combinatorics
| doi = 10.1007/978-3-642-68874-4_13
| pages = 312–345
| publisher = Springer
| title = Mathematical Programming: The State of the Art (XIth International Symposium on Mathematical Programming, Bonn 1982)
| year = 1983}}
*{{citation
| last = Rappoport | first = Ari
| doi = 10.1111/1467-8659.1140235
| issue = 4
| journal = Computer Graphics Forum
| pages = 235–240
| title = An efficient adaptive algorithm for constructing the convex differences tree of a simple polygon
| volume = 11
| year = 1992| s2cid = 20137707
}}
*{{citation
| last = Reay | first = John R.
| doi = 10.1007/BF02760885 | doi-access = free
| issue = 3
| journal = [[Israel Journal of Mathematics]]
| mr = 570883
| pages = 238–244 (1980)
| title = Several generalizations of Tverberg's theorem
| volume = 34
| year = 1979| s2cid = 121352925
}}
*{{citation
| last1 = Rieffel | first1 = Eleanor G. | author1-link = Eleanor Rieffel
| last2 = Polak | first2 = Wolfgang H.
| isbn = 978-0-262-01506-6
| pages = 215–216
| publisher = MIT Press
| title = Quantum Computing: A Gentle Introduction
| title-link = Quantum Computing: A Gentle Introduction
| year = 2011}}
*{{citation
| last = Rockafellar | first = R. Tyrrell | author-link = R. Tyrrell Rockafellar
| mr = 0274683
| publisher = Princeton University Press | ___location = Princeton, N.J.
| series = Princeton Mathematical Series
| title = Convex Analysis
| volume = 28
| year = 1970}}
*{{citation
| last = Rossi | first = Hugo | author-link = Hugo Rossi
| doi = 10.2307/1970292
| journal = [[Annals of Mathematics]]
| jstor = 1970292
| mr = 133479
| pages = 470–493
| series = Second Series
| title = Holomorphically convex sets in several complex variables
| volume = 74
| year = 1961| issue = 3 }}
*{{citation
| last1 = Rousseeuw | first1 = Peter J. | author1-link = Peter Rousseeuw
| last2 = Ruts | first2 = Ida
| last3 = Tukey | first3 = John W. | author3-link = John Tukey
| doi = 10.1080/00031305.1999.10474494
| issue = 4
| journal = [[The American Statistician]]
| pages = 382–387
| title = The bagplot: A bivariate boxplot
| volume = 53
| year = 1999}}
*{{citation
| last = Sakuma | first = Itsuo
| doi = 10.1016/0022-0531(77)90095-3
| issue = 1
| journal = [[Journal of Economic Theory]]
| pages = 223–227
| title = Closedness of convex hulls
| volume = 14
| year = 1977}}
*{{citation
| last = Schneider
| first = Rolf
| author-link = Rolf Schneider
| doi = 10.1017/CBO9780511526282
| isbn = 0-521-35220-7
| ___location = Cambridge
| mr = 1216521
| publisher = Cambridge University Press
| series = Encyclopedia of Mathematics and its Applications
| title = Convex Bodies: The Brunn–Minkowski Theory
| url = https://archive.org/details/convexbodiesbrun0000schn
| volume = 44
| year = 1993
}}
*{{citation
| last = Seaton | first = Katherine A.
| arxiv = 1603.08409
| doi = 10.1080/17513472.2017.1318512
| issue = 4
| journal = [[Journal of Mathematics and the Arts]]
| mr = 3765242
| pages = 187–202
| title = Sphericons and D-forms: a crocheted connection
| volume = 11
| year = 2017| s2cid = 84179479
}}
*{{citation
| last = Sedykh | first = V. D.
| issue = 6
| journal = Trudy Seminara Imeni I. G. Petrovskogo
| mr = 630708
| pages = 239–256
| title = Structure of the convex hull of a space curve
| year = 1981}}, translated in ''Journal of Soviet Mathematics'' 33 (4): 1140–1153, 1986, {{doi|10.1007/BF01086114}}
*{{citation
| last = Sontag
| first = Eduardo D.
| author-link = Eduardo D. Sontag
| issue = 1
| journal = [[Pacific Journal of Mathematics]]
| mr = 644949
| pages = 183–201
| title = Remarks on piecewise-linear algebra
| url = https://projecteuclid.org/euclid.pjm/1102734396
| volume = 98
| year = 1982
| doi = 10.2140/pjm.1982.98.183
| s2cid = 18446330
| doi-access = free
}}
*{{citation
| last = Steinitz | first = E. | author-link = Ernst Steinitz
| doi = 10.1515/crll.1914.144.1
| journal = [[Crelle's Journal|Journal für die Reine und Angewandte Mathematik]]
| mr = 1580890
| pages = 1–40
| title = Bedingt konvergente Reihen und konvexe Systeme. (Fortsetzung)
| volume = 1914
| year = 1914| issue = 144 | s2cid = 122998337 }}
*{{citation
| last = Talman
| first = Louis A.
| issue = 1–2
| journal = Kōdai Mathematical Seminar Reports
| mr = 463985
| pages = 62–70
| title = Fixed points for condensing multifunctions in metric spaces with convex structure
| url = https://projecteuclid.org/euclid.kmj/1138833572
| volume = 29
| year = 1977
}}
*{{citation
| last = Toussaint | first = Godfried | author-link = Godfried Toussaint
| citeseerx = 10.1.1.155.5671
| contribution = Solving geometric problems with the rotating calipers
| title = Proceedings of IEEE MELECON '83, Athens
| year = 1983}}
*{{citation
| last = Toussaint | first = Godfried | author-link = Godfried Toussaint
| contribution = An optimal algorithm for computing the relative convex hull of a set of points in a polygon
| pages = 853–856
| publisher = North-Holland
| title = Proceedings of EURASIP, Signal Processing III: Theories and Applications, Part 2
| year = 1986}}
*{{citation
| last = Weeks | first = Jeffrey R. | author-link = Jeffrey Weeks (mathematician)
| doi = 10.1016/0166-8641(93)90032-9
| issue = 2
| journal = [[Topology and Its Applications]]
| mr = 1241189
| pages = 127–149
| title = Convex hulls and isometries of cusped hyperbolic 3-manifolds
| volume = 52
| year = 1993| doi-access = free
}}
*{{citation
| last = Westermann | first = L. R. J.
| doi = 10.1016/1385-7258(76)90065-2
| issue = 2
| journal = [[Indagationes Mathematicae]]
| mr = 0404097
| pages = 179–184
| title = On the hull operator
| volume = 38
| year = 1976
| doi-access = free
}}
*{{citation
| last = White | first = F. Puryer
| date = April 1923
| issue = 68
| journal = Science Progress in the Twentieth Century
| jstor = 43432008
| pages = 517–526
| title = Pure mathematics
| volume = 17}}
*{{citation
| last = Whitley | first = Robert
| doi = 10.2307/2046536
| issue = 2
| journal = [[Proceedings of the American Mathematical Society]]
| mr = 835903
| pages = 376–377
| title = The Kreĭn-Šmulian theorem
| volume = 97
| year = 1986| jstor = 2046536
}}
*{{citation
| last1 = Williams | first1 = Jason
| last2 = Rossignac | first2 = Jarek
| editor1-last = Kobbelt | editor1-first = Leif
| editor2-last = Shapiro | editor2-first = Vadim
| contribution = Tightening: curvature-limiting morphological simplification
| doi = 10.1145/1060244.1060257
| hdl = 1853/3736
| pages = 107–112
| publisher = ACM
| title = Proceedings of the Tenth ACM Symposium on Solid and Physical Modeling 2005, Cambridge, Massachusetts, USA, June 13-15, 2005
| year = 2005| s2cid = 15514388
}}
*{{citation
| last = Worton | first = Bruce J.
| doi = 10.2307/2533254
| issue = 4
| journal = [[Biometrics (journal)|Biometrics]]
| jstor = 2533254
| pages = 1206–1215
| title = A convex hull-based estimator of home-range size
| volume = 51
| year = 1995}}
{{refend}}