Content deleted Content added
Tessaract2 (talk | contribs) Added a wikilink |
Link suggestions feature: 3 links added. |
||
(22 intermediate revisions by 12 users not shown) | |||
Line 1:
{{Short description|Stack-based method for clustering}}
{{good article}}
In the theory of [[cluster analysis]], the '''nearest-neighbor chain algorithm''' is an [[algorithm]] that can speed up several methods for [[agglomerative hierarchical clustering]]. These are methods that take a collection of points as input, and create a hierarchy of clusters of points by repeatedly merging pairs of smaller clusters to form larger clusters. The clustering methods that the nearest-neighbor chain algorithm can be used for include [[Ward's method]], [[complete-linkage clustering]], and [[single-linkage clustering]]; these all work by repeatedly merging the closest two clusters but use different definitions of the distance between clusters. The cluster distances for which the nearest-neighbor chain algorithm works are called ''reducible'' and are characterized by a simple inequality among certain cluster distances.
The main idea of the algorithm is to find pairs of clusters to merge by following [[Path (graph theory)|paths]] in the [[nearest neighbor graph]] of the clusters. Every such path will eventually terminate at a pair of clusters that are nearest neighbors of each other, and the algorithm chooses that pair of clusters as the pair to merge. In order to save work by re-using as much as possible of each path, the algorithm uses a [[Stack (abstract data type)|stack data structure]] to keep track of each path that it follows. By following paths in this way, the nearest-neighbor chain algorithm merges its clusters in a different order than methods that always find and merge the closest pair of clusters. However, despite that difference, it always generates the same hierarchy of clusters.▼
The nearest-neighbor chain algorithm constructs a clustering in time proportional to the square of the number of points to be clustered. This is also proportional to the size of its input, when the input is provided in the form of an explicit [[
==Background==
[[File:Hierarchical clustering diagram.png|thumb|upright=1.35|A hierarchical clustering of six points. The points to be clustered are at the top of the diagram, and the nodes below them represent clusters.]]
Many problems in [[data analysis]] concern [[Cluster analysis|clustering]], grouping data items into clusters of closely related items. [[Hierarchical clustering]] is a version of cluster analysis in which the clusters form a hierarchy or tree-like structure rather than a strict partition of the data items. In some cases, this type of clustering may be performed as a way of performing cluster analysis at multiple different scales simultaneously. In others, the data to be analyzed naturally has an unknown tree structure and the goal is to recover that structure by performing the analysis. Both of these kinds of analysis can be seen, for instance, in the application of hierarchical clustering to [[Taxonomy (biology)|biological taxonomy]]. In this application, different living things are grouped into clusters at different scales or levels of similarity ([[Taxonomic rank|species, genus, family, etc]]). This analysis simultaneously gives a multi-scale grouping of the organisms of the present age, and aims to accurately reconstruct the [[branching process]] or [[Phylogenetic tree|evolutionary tree]] that in past ages produced these organisms.<ref>{{citation
▲The main idea of the algorithm is to find pairs of clusters to merge by following [[Path (graph theory)|paths]] in the [[nearest neighbor graph]] of the clusters. Every such path will eventually terminate at a pair of clusters that are nearest neighbors of each other, and the algorithm chooses that pair of clusters as the pair to merge. In order to save work by re-using as much as possible of each path, the algorithm uses a [[Stack (abstract data type)|stack data structure]] to keep track of each path that it follows. By following paths in this way, the nearest-neighbor chain algorithm merges its clusters in a different order than methods that always find and merge the closest pair of clusters. However, despite that difference, it always generates the same hierarchy of clusters.
| last = Gordon | first = Allan D.
| editor1-last = Arabie | editor1-first = P.
▲The nearest-neighbor chain algorithm constructs a clustering in time proportional to the square of the number of points to be clustered. This is also proportional to the size of its input, when the input is provided in the form of an explicit [[Adjacency matrix|distance matrix]]. The algorithm uses an amount of memory proportional to the number of points, when it is used for clustering methods such as Ward's method that allow constant-time calculation of the distance between clusters. However, for some other clustering methods it uses a larger amount of memory in an auxiliary data structure with which it keeps track of the distances between pairs of clusters.
| editor2-last = Hubert | editor2-first = L. J.
| editor3-last = De Soete | editor3-first = G.
| contribution = Hierarchical clustering
| contribution-url = https://books.google.com/books?id=HbfsCgAAQBAJ&pg=PA65
| isbn = 9789814504539
| ___location = River Edge, NJ
| pages = 65–121
| publisher = World Scientific
| title = Clustering and Classification
| year = 1996}}.</ref>
The input to a clustering problem consists of a set of points.<ref name="murtagh-tcj"/> A ''cluster'' is any proper subset of the points, and a hierarchical clustering is a [[maximal element|maximal]] family of clusters with the property that any two clusters in the family are either nested or [[disjoint set|disjoint]].
Line 14 ⟶ 29:
The distance or dissimilarity should be symmetric: the distance between two points does not depend on which of them is considered first.
However, unlike the distances in a [[metric space]], it is not required to satisfy the [[triangle inequality]].<ref name="murtagh-tcj"/>
Next, the dissimilarity function is extended from pairs of points to pairs of clusters. Different clustering methods perform this extension in different ways. For instance, in the [[single-linkage clustering]] method, the distance between two clusters is defined to be the minimum distance between any two points from each cluster. Given this distance between clusters, a hierarchical clustering may be defined by a [[greedy algorithm]] that initially places each point in its own single-point cluster and then repeatedly forms a new cluster by merging the [[closest pair]] of clusters.<ref name="murtagh-tcj"/>
Line 22 ⟶ 36:
| arxiv = cs.DS/9912014
| issue = 1
| journal =
| pages = 1–23
| publisher = ACM
Line 28 ⟶ 42:
| url = http://www.jea.acm.org/2000/EppsteinDynamic/
| volume = 5
| year = 2000| doi = 10.1145/351827.351829 | bibcode = 1999cs.......12014E | s2cid = 1357701 }}.</ref><ref name="day-edels">{{citation
| last1 = Day | first1 = William H. E.
| last2 = Edelsbrunner | first2 = Herbert | author2-link = Herbert Edelsbrunner
Line 38 ⟶ 52:
| url = http://www.cs.duke.edu/~edels/Papers/1984-J-05-HierarchicalClustering.pdf
| volume = 1
| year = 1984| s2cid = 121201396
==The algorithm==
[[File:Nearest-neighbor chain algorithm animated.gif|frame
Intuitively, the nearest neighbor chain algorithm repeatedly follows a chain of clusters {{math|''A'' → ''B'' → ''C'' → ...}} where each cluster is the nearest neighbor of the previous one, until reaching a pair of clusters that are mutual nearest neighbors.<ref name="murtagh-tcj">{{citation
| last = Murtagh | first = Fionn
Line 49 ⟶ 64:
| year = 1983
| url = http://www.multiresolutions.com/strule/old-articles/Survey_of_hierarchical_clustering_algorithms.pdf
| doi = 10.1093/comjnl/26.4.354| doi-access = free
}}.</ref> In more detail, the algorithm performs the following steps:<ref name="murtagh-tcj"/><ref name="murtagh-hmds">{{citation
Line 55 ⟶ 71:
| editor1-last = Abello | editor1-first = James M.
| editor2-last = Pardalos | editor2-first = Panos M.
| editor3-last = Resende | editor3-first = Mauricio G. C. | editor3-link = Mauricio Resende
| contribution = Clustering in massive data sets
| isbn = 978-1-4020-0489-6
Line 138 ⟶ 154:
| title = A general theory of classificatory sorting strategies. I. Hierarchical systems
| volume = 9
| year = 1967
}}.</ref>
:<math>d(A\cup B,C) = \frac{n_A+n_C}{n_A+n_B+n_C} d(A,C) + \frac{n_B+n_C}{n_A+n_B+n_C} d(B,C) - \frac{n_C}{n_A+n_B+n_C} d(A,B).</math>
Distance update formulas such as this one are called formulas "of Lance–Williams type" after the work of {{harvtxt|Lance|Williams|1967}}.
Line 183 ⟶ 200:
===Centroid distance===
Another distance measure commonly used in agglomerative clustering is the distance between the centroids of pairs of clusters, also known as the weighted group method.<ref name="mirkin"/><ref name="lance-williams"/> It can be calculated easily in constant time per distance calculation. However, it is not reducible. For instance, if the input forms the set of three points of an [[equilateral triangle]], merging two of these points into a larger cluster causes the inter-cluster distance to decrease, a violation of reducibility. Therefore, the nearest-neighbor chain algorithm will not necessarily find the same clustering as the greedy algorithm. Nevertheless, {{harvtxt|Murtagh|1983}} writes that the nearest-neighbor chain algorithm provides "a good [[heuristic]]" for the centroid method.<ref name="murtagh-tcj"/>
A different algorithm by {{harvtxt|Day|Edelsbrunner|1984}} can be used to find the greedy clustering in {{math|''O''(''n''<sup>2</sup>)}} time for this distance measure.<ref name="day-edels"/>
Line 227 ⟶ 244:
{{reflist|colwidth=30em}}
[[Category:
|