Structural engineering: Difference between revisions

Content deleted Content added
m I enriched the description on structural engineering
Tags: Reverted Visual edit
m Reverted 1 edit by Mhiztar sliver (talk) to last revision by 75.128.4.144
 
(13 intermediate revisions by 13 users not shown)
Line 5:
'''Structural engineering''' is a sub-discipline of [[civil engineering]] in which [[structural engineer]]s are trained to design the 'bones and joints' that create the form and shape of human-made [[Structure#Load-bearing|structures]]. [[Structural engineers]] also must understand and calculate the [[structural stability|stability]], strength, [[structural rigidity|rigidity]] and earthquake-susceptibility of built structures for [[building]]s<ref>[http://www.fao.org/docrep/015/i2433e/i2433e04.pdf FAO online publication] {{webarchive|url=https://web.archive.org/web/20161119191121/http://www.fao.org/docrep/015/i2433e/i2433e04.pdf |date=2016-11-19 }}</ref> and [[nonbuilding structure]]s. The structural designs are integrated with those of other designers such as [[architects]] and [[Building services engineering|building services engineer]] and often supervise the construction of projects by [[contractors]] on site.<ref name = IStructE/> They can also be involved in the design of machinery, medical equipment, and vehicles where structural integrity affects functioning and safety. See [[glossary of structural engineering]].
 
Structural engineering theory is based upon applied [[physics|physical laws]] and [[empirical]] knowledge of the structural performance of different materials and geometries. Structural engineering design uses a number of relatively simple structural concepts to build complex [[structural system]]s. Structural engineers are responsible for making creative and efficient use of funds, structural elements and materials to achieve these goals.<ref name="IStructE">{{cite web|url = http://www.rmg-engineers.com/what-is-a-structural-engineer/|title = What is a structural engineer|access-date = 2015-11-30|date = 2015-11-30|website = RMG Engineers|url-status = live|archive-url = https://web.archive.org/web/20151208052438/http://www.rmg-engineers.com/what-is-a-structural-engineer/|archive-date = 2015-12-08}}</ref> Structural engineers are also concerned with the structural health monitoring and structural assessment of structures to establish the safety standing of structure using different techniques such as visual inspection, vibration method, contactless/non-destructive methods such as ultrasound and the very new method of using robots in assessing structural health of structures.
It is necessary to establish that structural engineering is not only limited to the field of civil engineering and its structures alone. It also involves the design of aero-structures which include but not limited to aeroplane structures, space vehicles, amongst other structures. Similarly, structural engineering is also include design of wind energy structures and nuclear structures. The fundamental structural analyses, design, material selection and optimization are the same but the material of use and design requirements may be different.
 
Structural engineering theory is based upon applied [[physics|physical laws]] and [[empirical]] knowledge of the structural performance of different materials and geometries. Structural engineering design uses a number of relatively simple structural concepts to build complex [[structural system]]s. Structural engineers are responsible for making creative and efficient use of funds, structural elements and materials to achieve these goals.<ref name="IStructE">{{cite web|url = http://www.rmg-engineers.com/what-is-a-structural-engineer/|title = What is a structural engineer|access-date = 2015-11-30|date = 2015-11-30|website = RMG Engineers|url-status = live|archive-url = https://web.archive.org/web/20151208052438/http://www.rmg-engineers.com/what-is-a-structural-engineer/|archive-date = 2015-12-08}}</ref> Structural engineers are also concerned with the structural health monitoring and structural assessment of structures to establish the safety standing of structure using different techniques such as visual inspection, vibration method, contactless/non-destructive methods such as ultrasound and the very new method of using robots in assessing structural health of structures.
{{TOC limit|limit=3}}
 
Line 60 ⟶ 58:
Structural engineers are responsible for engineering design and structural analysis. Entry-level structural engineers may design the individual structural elements of a structure, such as the beams and columns of a building. More experienced engineers may be responsible for the structural design and integrity of an entire system, such as a building.{{cn|date=February 2024}}
 
Structural engineers often specialize in particular types of structures, such as buildings, bridges, pipelines, industrial, tunnels, vehicles, ships, aircraft, and spacecraft. Structural engineers who specialize in buildings oftenmay specialize in particular construction materials such as concrete, steel, wood, masonry, alloys, and composites, and may focus on particular types of buildings such as offices, schools, hospitals, residential, and so forth.{{cn|date=February 2024}}
 
Structural engineering has existed since humans first started to construct their structures. It became a more defined and formalized profession with the emergence of architecture as a distinct profession from engineering during the industrial revolution in the late 19th century. Until then, the architect and the structural engineer were usually one and the same thing – the master builder. Only with the development of specialized knowledge of structural theories that emerged during the 19th and early 20th centuries, did the professional structural engineers come into existence.{{cn|date=February 2024}}
Line 77 ⟶ 75:
 
[[File:Burjdubaiaug92007.jpg|thumb|upright|[[Burj Khalifa]], in [[Dubai]], the [[world's tallest building]], shown under construction in 2007 (since completed)]]
 
Structural building engineering includes all structural engineering related to the design of buildings. It is a branch of structural engineering closely affiliated with [[architecture]].{{cn|date=February 2024}}
 
Structural building engineering is primarily driven by the creative manipulation of materials and forms and the underlying mathematical and scientific ideas to achieve an end that fulfills its functional requirements and is structurally safe when subjected to all the loads it could reasonably be expected to experience. This is subtly different from architectural design, which is driven by the creative manipulation of materials and forms, mass, space, volume, texture, and light to achieve an end which is aesthetic, functional, and often artistic.
Line 127 ⟶ 123:
Civil engineering structures are often subjected to very extreme forces, such as large variations in temperature, dynamic loads such as waves or traffic, or high pressures from water or compressed gases. They are also often constructed in corrosive environments, such as at sea, in industrial facilities, or below ground.
 
===Mechanical structures===
The principles of structural engineering apply to a variety of mechanical (moveable) structures. The design of static structures assumes they always have the same geometry (in fact, so-called static structures can move significantly, and structural engineering design must take this into account where necessary), but the design of moveable or moving structures must account for [[Fatigue (material)|fatigue]], variation in the method in which load is resisted and significant deflections of structures.
 
===Mechanical engineering structures===
The forces which parts of a machine are subjected to can vary significantly and can do so at a great rate. The forces which a boat or aircraft are subjected to vary enormously and will do so thousands of times over the structure's lifetime. The structural design must ensure that such structures can endure such loading for their entire design life without failing.
 
Line 201 ⟶ 196:
Columns are elements that carry only axial force (compression) or both axial force and bending (which is technically called a beam-column but practically, just a column). The design of a column must check the axial capacity of the element and the buckling capacity.
 
The [[buckling]] capacity is the capacity of the element to withstand the propensity to buckle. Its capacity depends upon its geometry, material, and the effective length of the column, which depends upon the restraint conditions at the top and bottom of the column. The effective length is <math>K*l</math> where <math>l</math> is the real length of the column and K is the factor dependent on the restraint conditions.
 
The capacity of a column to carry axial load depends on the degree of bending it is subjected to, and vice versa. This is represented on an interaction chart and is a complex non-linear relationship.
Line 230 ⟶ 225:
{{Main|Plate (structure)}}
 
Plates carry bending in two directions. A concrete flat slab is an example of a plate. PlatesPlate arebehavior understoodis bybased usingon [[continuum mechanics]], but. dueDue to the complexity involved they are most often designedanalyzed using a codifiedfinite empirical approach, or computerelement analysis.
 
They can also be designed with yield line theory, where an assumed collapse mechanism is analyzed to give an upper bound on the collapse load. This technique is used in practice<ref>{{cite web |title=Assessment of a Pair of Reinforced Concrete Roof Slabs |url=http://www.ramsay-maunder.co.uk/downloads/precast_roof_slabs.pdf |website=Ramsay-Maunder.co.uk |publisher=Ramsay Maunder Associates |date=2011 |access-date=2022-03-08 }}</ref> but because the method provides an upper-bound (i.e. an unsafe prediction of the collapse load) for poorly conceived collapse mechanisms, great care is needed to ensure that the assumed collapse mechanism is realistic.<ref>{{cite web |url=http://www.ramsay-maunder.co.uk/downloads/l_shaped_landing.pdf |title=Reappraisal of a Simply Supported Landing Slab |website=Ramsay-Maunder.co.uk |publisher=Ramsay Maunder Associates |url-status=live |archive-url=https://web.archive.org/web/20160304071038/http://www.ramsay-maunder.co.uk/downloads/l_shaped_landing.pdf |date=2011 |archive-date=2016-03-04 |access-date=2022-03-08 }}</ref>
Line 287 ⟶ 282:
* [[List of bridge disasters]]
* [[List of structural engineers]]
* [[List of structural engineering software]]
* [[Mechanical engineering]]
* [[Nanostructure]]