Content deleted Content added
try to clarify what these expressions mean |
Reverted 1 edit by 135.180.128.228 (talk): Forum posts are not usable sources |
||
(21 intermediate revisions by 10 users not shown) | |||
Line 1:
{{Short description|Expression in mathematical analysis}}
In [[calculus]],
\lim_{x \to c} \bigl(f(x) + g(x)\bigr) &= \lim_{x \to c} f(x) + \lim_{x \to c} g(x), \\[3mu]
\lim_{x \to c} \bigl(f(x)g(x)\bigr) &= \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x),
\end{align}</math>
and likewise for other arithmetic operations; this is sometimes called the [[limit of a function#Properties|algebraic limit theorem]]. However,
among a wide variety of uncommon others, where each expression stands for the limit of a function constructed by an arithmetical combination of two functions whose limits respectively tend to {{tmath|0,}} {{tmath|1,}} or {{tmath|\infty}} as indicated.{{sfnp|Varberg|Purcell|Rigdon|2007|p=423, 429, 430, 431, 432}}
The most common example of an indeterminate form is the quotient of two functions each of which converges to zero. This indeterminate form is denoted by <math>0/0</math>. For example, as <math>x</math> approaches <math>0
So the fact that two [[function (mathematics)|functions]] <math>f(x)</math> and <math>g(x)</math> converge to <math>0
{{block indent|<math> \lim_{x \to c} \frac{f(x)}{g(x)} .</math>}}
Line 26:
== Some examples and non-examples ==
=== Indeterminate form 0/0 ===
{{Redirect|0/0|the symbol|Percent sign|0 divided by 0|Division by zero}}
<gallery>
File:Indeterminate form - x over x.gif|Fig. 1: {{var|y}} = {{sfrac|{{var|x}}|{{var|x}}}}
Line 52:
===Indeterminate form 0<sup>0</sup> ===
{{main|Zero to the power of zero}}
{{multiple image
| image1 = Indeterminate form - x0.gif
| caption2 = Graph of {{math|1=''y'' = 0{{sup|''x''}}}}
| total_width = 300
| direction = vertical
}}
The following limits illustrate that the expression <math>0^0</math> is an indeterminate form:
<math display="block"> \begin{align}
\end{align} </math>
Thus, in general, knowing that <math>\textstyle\lim_{x \to c} f(x) \;=\; 0</math> and <math>\textstyle\lim_{x \to c} g(x) \;=\; 0</math> is not sufficient to evaluate the limit
▲{{block indent|<math>\lim_{x \to c} f(x)^{g(x)} .</math>}}
If the functions <math>f</math> and <math>g</math> are [[Analytic function|analytic]] at <math>c</math>, and <math>f</math> is positive for <math>x</math> sufficiently close (but not equal) to <math>c</math>, then the limit of <math>f(x)^{g(x)}</math> will be <math>1</math>.<ref>{{cite journal |doi=10.2307/2689754 |author1=Louis M. Rotando |author2=Henry Korn |title=The indeterminate form 0<sup>0</sup> |journal=Mathematics Magazine |date=January 1977 |volume=50 |issue=1 |pages=41–42|jstor=2689754 }}</ref> Otherwise, use the transformation in the [[#List of indeterminate forms|table]] below to evaluate the limit.
Line 70 ⟶ 73:
=== Expressions that are not indeterminate forms ===
The expression <math>1/0</math> is not commonly regarded as an indeterminate form, because if the limit of <math>f/g</math> exists then there is no ambiguity as to its value, as it always diverges. Specifically, if <math>f</math> approaches <math>1</math> and <math>g</math> approaches <math>0
# <math>f/g</math> approaches <math>+\infty</math>
Line 78 ⟶ 81:
In each case the absolute value <math>|f/g|</math> approaches <math>+\infty</math>, and so the quotient <math>f/g</math> must diverge, in the sense of the [[extended real number]]s (in the framework of the [[projectively extended real line]], the limit is the [[Point at infinity|unsigned infinity]] <math>\infty</math> in all three cases<ref name=":3">{{Cite web|url=https://www.cut-the-knot.org/blue/GhostCity.shtml|title=Undefined vs Indeterminate in Mathematics|website=www.cut-the-knot.org|access-date=2019-12-02}}</ref>). Similarly, any expression of the form <math>a/0</math> with <math>a\ne0</math> (including <math>a=+\infty</math> and <math>a=-\infty</math>) is not an indeterminate form, since a quotient giving rise to such an expression will always diverge.
The expression <math>0^\infty</math> is not an indeterminate form. The expression <math>0^{+\infty}</math> obtained from considering <math>\lim_{x \to c} f(x)^{g(x)}</math> gives the limit <math>0
To see why, let <math>L = \lim_{x \to c} f(x)^{g(x)},</math> where <math> \lim_{x \to c} {f(x)}=0,</math> and <math> \lim_{x \to c} {g(x)}=\infty.</math> By taking the natural logarithm of both sides and using <math> \lim_{x \to c} \ln{f(x)}=-\infty,</math> we get that <math>\ln L = \lim_{x \to c} ({g(x)}\times\ln{f(x)})=\infty\times{-\infty}=-\infty,</math> which means that <math>L = {e}^{-\infty}=0.</math>
Line 95 ⟶ 98:
Suppose there are two equivalent infinitesimals <math>\alpha \sim \alpha'</math> and <math>\beta \sim \beta'</math>.
For the evaluation of the indeterminate form <math>0/0</math>, one can make use of the following facts about equivalent [[infinitesimal]]s (e.g., <math>x\sim\sin x</math> if ''x'' becomes closer to zero):<ref>{{Cite web|url=http://www.vaxasoftware.com/doc_eduen/mat/infiequi.pdf|title=Table of equivalent infinitesimals|website=Vaxa Software}}</ref>
Line 110 ⟶ 114:
{{block indent|<math>e^x - 1\sim x,</math>}}
{{block indent|<math>(1 + x)^a - 1 \sim ax.</math>}}
For example:
<math display=block>\begin{align}
\lim_{x \to 0} \frac{1}{x^3} \left[\left(\frac{2+\cos x}{3}\right)^x - 1 \right]
&= \lim_{x \to 0} \frac{e^{x\ln{\frac{2 + \cos x}{3}}}-1}{x^3} \\
&= \lim_{x \to 0} \frac{1}{x^2} \ln \frac{2+ \cos x}{3} \\
&= \lim_{x \to 0} \frac{1}{x^2} \ln \left(\frac{\cos x -1}{3}+1\right) \\
&= \lim_{x \to 0} \frac{\cos x -1}{3x^2} \\
&= \lim_{x \to 0} -\frac{x^2}{6x^2} \\
&= -\frac{1}{6}
\end{align}</math>
In the 2nd equality, <math>e^y - 1 \sim y</math> where <math>y = x\ln{2+\cos x \over 3}</math> as ''y'' become closer to 0 is used, and <math>y \sim \ln {(1+y)}</math> where <math>y = {{\cos x - 1} \over 3}</math> is used in the 4th equality, and <math>1-\cos x \sim {x^2 \over 2}</math> is used in the 5th equality.
Line 130 ⟶ 145:
The following table lists the most common indeterminate forms and the transformations for applying l'Hôpital's rule.
{| border=1 class="wikitable" style="
!Indeterminate form
!Conditions
Line 182 ⟶ 197:
== References ==
=== Citations ===
{{reflist}}
=== Bibliographies ===
* {{cite book
| last1 = Varberg | first1 = Dale E.
| last2 = Purcell | first2 = Edwin J.
| last3 = Rigdon | first3 = Steven E.
| title = Calculus
| year = 2007
| publisher = [[Pearson Prentice Hall]]
| edition = 9th
| isbn = 978-0131469686
}}
{{Calculus topics}}
|