Vector-radix FFT algorithm: Difference between revisions

Content deleted Content added
BG19bot (talk | contribs)
m WP:CHECKWIKI error fix for #61. Punctuation goes before References. Do general fixes if a problem exists. -
m clean up spacing around commas and other punctuation, replaced: ,and → , and , ,N → , N (2), ,k → , k (29), ,r → , r (5), ,u → , u
 
(20 intermediate revisions by 11 users not shown)
Line 1:
{{Short description|Multidimensional fast Fourier transform algorithm}}
The '''vector-radix FFT algorithm''', is a multidimensional [[fast Fourier transform]] (FFT) algorithm, which is a generalization of the ordinary [[Cooley–Tukey FFT algorithm]] that divides the transform dimensions by arbitrary radices. It breaks a multidimensional (MD) [[discrete Fourier transform]] (DFT) down into successively smaller MD [[DFT]]sDFTs until, ultimately, only trivial MD [[DFT]]sDFTs need to be evaluated.<ref name="Dudgeon83">{{cite book|last1=Dudgeon|first1=Dan|last2=Russell|first2=Mersereau|title=Multidimensional Digital Signal Processing|date=September 1983|publisher=Prentice Hall|isbn=0136049591|pages=76}}</ref><br />
The most common multidimensional [[FFT]] algorithm is the row-column algorithm, which means transforming the array first in one index and then in the other, see more in [[FFT]]. Then a radix-2 direct 2-D FFT has been developed,<ref name="Rivard77">{{cite journal|last1=Rivard|first1=G.|title=Direct fast Fourier transform of bivariate functions|journal=IEEE Transactions on Acoustics, Speech, and Signal Processing|volume=25|pages=250–252|doi=10.1109/TASSP.1977.1162951|url=http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1162951&isnumber=26125}}</ref> and it can eliminate 25% of the multiplies as compared to the conventional row-column approach. And this algorithm has been extended to rectangular arrays and arbitrary radices,<ref name="Harris77">{{cite journal|last1=Harris|first1=D.|last2=McClellan|first2=J.|last3=Chan|first3=D.|last4=Schuessler|first4=H.|title=Vector radix fast Fourier transform|journal=IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '77|volume=2|pages=548–551|doi=10.1109/ICASSP.1977.1170349|url=http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1170349&isnumber=26347}}</ref> which is the general Vector-Radix algorithm. <br />
 
'''Vector-radix FFT algorithm''' can reduce the number of complex multiplications significantly, compared to row-vector algorithm. For example, for a <math>N^M</math> element matrix (M dimensions, and size N on each dimension), the number of complex multiples of vector-radix FFT algorithm for radix-2 is <math>\frac{2^M -1}{2^M} N^M \log_2 N</math>, meanwhile, for row-column algorithm, it is <math>\frac{M N^M} 2 \log_2 N</math>. And generally, even larger savings in multiplies are obtained when this algorithm is operated on larger radices and on higher dimensional arrays.<ref name=Harris77/><br />
Overall,The themost vector-radixcommon algorithmmultidimensional significantly[[Fast reducesFourier thetransform|FFT]] structuralalgorithm complexity ofis the traditionalrow-column DFTalgorithm, havingwhich ameans better indexing scheme, attransforming the expensearray of a slight increasefirst in arithmeticone operations.index Soand thisthen algorithmin isthe widelyother, usedsee formore manyin applications[[Fast inFourier engineering,transform|FFT]]. science,Then anda mathematics,radix-2 fordirect example,2-D implementationsFFT inhas imagebeen processingdeveloped,<ref name="Buijs74Rivard77">{{cite journal|last1=BuijsRivard|first1=H.|last2=Pomerleau|first2=A.|last3=Fournier|first3=M.|last4=Tam|first4=WG.|title=Implementation of aDirect fast Fourier transform (FFT) for imageof processingbivariate applicationsfunctions|journal=IEEE Transactions on Acoustics, Speech, and Signal Processing|datevolume=Dec 197425|volumeissue=223|pages=420–424250–252|doi=10.1109/TASSP.19741977.11626201162951|urlyear=http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1162620&isnumber=261071977}}</ref> and highit speedcan FFTeliminate processor25% designingof the multiplies as compared to the conventional row-column approach. And this algorithm has been extended to rectangular arrays and arbitrary radices,<ref name="Badar15Harris77">{{cite journalbook|last1=BadarHarris|first1=SD.|last2=DandekarMcClellan|first2=J.|last3=Chan|first3=D.|last4=Schuessler|first4=H.|title=HighICASSP speed'77. FFT processor design using radix −4 pipelined architecture|journal=2015IEEE International Conference on IndustrialAcoustics, InstrumentationSpeech, and ControlSignal (ICIC),Processing Pune,|chapter=Vector 2015radix fast Fourier transform |volume=2|pages=1050–1055548–551|doi=10.1109/IICICASSP.20151977.71509011170349|urlyear=http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7150901&isnumber=71505761977}}</ref> which is the general vector-radix algorithm.
 
'''Vector-radix FFT algorithm''' can reduce the number of complex multiplications significantly, compared to row-vector algorithm. For example, for a <math>N^M</math> element matrix (M dimensions, and size N on each dimension), the number of complex multiples of vector-radix FFT algorithm for radix-2 is <math>\frac{2^M -1}{2^M} N^M \log_2 N</math>, meanwhile, for row-column algorithm, it is <math>\frac{M N^M} 2 \log_2 N</math>. And generally, even larger savings in multiplies are obtained when this algorithm is operated on larger radices and on higher dimensional arrays.<ref name=Harris77/><br />
 
Overall, the vector-radix algorithm significantly reduces the structural complexity of the traditional DFT having a better indexing scheme, at the expense of a slight increase in arithmetic operations. So this algorithm is widely used for many applications in engineering, science, and mathematics, for example, implementations in image processing,<ref name="Buijs74">{{cite journal|last1=Buijs|first1=H.|last2=Pomerleau|first2=A.|last3=Fournier|first3=M.|last4=Tam|first4=W.|title=Implementation of a fast Fourier transform (FFT) for image processing applications|journal=IEEE Transactions on Acoustics, Speech, and Signal Processing|date=Dec 1974|volume=22|issue=6|pages=420–424|doi=10.1109/TASSP.1974.1162620}}</ref> and high speed FFT processor designing.<ref name="Badar15">{{cite book|last1=Badar|first1=S.|last2=Dandekar|first2=D.|title=2015 International Conference on Industrial Instrumentation and Control (ICIC) |chapter=High speed FFT processor design using radix −<sup>4</sup> pipelined architecture |pages=1050–1055|doi=10.1109/IIC.2015.7150901|year=2015|isbn=978-1-4799-7165-7|s2cid=11093545 }}</ref>
 
== 2-D DIT case ==
As with the [[Cooley–Tukey FFT algorithm]], the two dimensional vector-radix FFT is derived by decomposing the regular 2-D [[DFT]] into sums of smaller [[DFT]]'s multiplied by "twiddle" factorfactors.<br />
 
A decimation-in-time ('''DIT''') algorithm means the decomposition is based on time ___domain <math>x</math>, see more in [[Cooley–Tukey FFT algorithm]].
 
We suppose the 2-D [[DFT]] is defined
:<math>X(k_1,k_2) = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x[n_1, n_2] \cdot W_{N_1}^{k_1 n_1} W_{N_2}^{k_2 n_2}, </math>
where <math>k_1 = 0,\dots,N_1-1</math>, and <math>k_2 = 0,\dots,N_2-1</math>, and <math>x[n_1, n_2]</math> is aan <math>N_1 \times N_2</math> matrix, and <math>W_N^{k n} = \exp(-j 2\pi /N)</math>.
 
For simplicity, let us assume that <math>N_1=N_2=N</math>, and the radix-<math>(r\times r)</math>( is such that <math>N/r</math> areis integers)an integer.
 
Using the change of variables:
* <math>n_i=rp_i+q_i</math>, where <math>p_i=0,\ldots,(N/r)-1; q_i = 0,\ldots,r-1;</math>
* <math>k_i=u_i+v_i N/r</math>, where <math>u_i=0,\ldots,(N/r)-1; v_i = 0,\ldots,r-1;</math>
where <math>i = 1</math> or <math>2</math>, then the two dimensional DFT can be written as:<ref name="Chan92">{{cite journal|last1=Chan|first1=S. C.|last2=Ho|first2=K. L.|title=Split vector-radix fast Fourier transform|journal=IEEE Transactions on Signal Processing|volume=40|issue=8|pages=2029–2039|doi=10.1109/78.150004|urlbibcode=http://ieeexplore1992ITSP.ieee.org/stamp/stamp.jsp?tp=&arnumber=150004&isnumber40.2029C|year=39661992}}</ref>
:<math> X(u_1+v_1 N/r,u_2+v_2 N/r)=\sum_{q_1=0}^{r-1} \sum_{q_2=0}^{r-1} \left[ \sum_{p_1=0}^{N/r-1} \sum_{p_2=0}^{N/r-1} x[rp_1+q_1, rp_1rp_2+q_1q_2] W_{N/r}^{p_1 u_1} W_{N/r}^{p_2 u_2} \right] \cdot W_N^{q_1 u_1+q_2 u_2} W_r^{q_1 v_1} W_r^{q_2 v_2},</math>
 
[[File:2-D2x2 radix DIT-FFT-butterfly diagram.pngsvg|thumb|400px|One stage "butterfly" for DIT vector-radix 2x2 FFT]]
 
The equation above defines the basic structure of the 2-D DIT radix-<math>(r\times r)</math> "butterfly". (See 1-D "butterfly" in [[Cooley–Tukey FFT algorithm]])
 
When <math>r=2</math>, the equation can be broken into four summations: one over those samples of x for which both <math>n_1</math> and <math>n_2</math> are even, one for which <math>n_1</math> is even and <math>n_2</math>this isleads odd, one of which <math>n_1</math> is odd and <math>n_2</math> is even, and one for which both <math>n_1</math> and <math>n_2</math> are odd,to:<ref name=Dudgeon83/> and this leads to:
 
:<math> X(k_1,k_2) = S_{00}(k_1,k_2) + S_{01}(k_1,k_2) W_N^{k_2} +S_{10}(k_1,k_2) W_N^{k_1} + S_{11}(k_1,k_2) W_N^{k_1+k_2}</math> for <math>0\leq k_1, k_2 < \frac{N}{2}</math>,
 
where <math>S_{ij}(k_1,k_2)=\sum_{n_1=0}^{N/2-1} \sum_{n_2=0}^{N/2-1} x[2 n_1 + i, 2 n_2 + j] \cdot W_{N/2}^{n_1 k_1} W_{N/2}^{n_2 k_2}.</math>.
 
The <math>S_{ij}</math> can be viewed as the <math>N/2</math>-dimensional DFT, each over a subset of the original sample:
* <math>S_{00}</math> is the DFT over those samples of <math>x</math> for which both <math>n_1</math> and <math>n_2</math> are even;
* <math>S_{01}</math> is the DFT over the samples for which <math>n_1</math> is even and <math>n_2</math> is odd;
* <math>S_{10}</math> is the DFT over the samples for which <math>n_1</math> is odd and <math>n_2</math> is even;
* <math>S_{11}</math> is the DFT over the samples for which both <math>n_1</math> and <math>n_2</math> are odd.
 
Thanks to the [[List of trigonometric identities#Shifts and periodicity|periodicity of the complex exponential]], we can obtain the following additional identities, valid for <math>0\leq k_1, k_2 < \frac{N}{2}</math>:
* <math>X\biggl(k_1+\frac{N}{2},k_2\biggr) = S_{00}(k_1,k_2) + S_{01}(k_1,k_2) W_N^{k_2} -S_{10}(k_1,k_2) W_N^{k_1} - S_{11}(k_1,k_2) W_N^{k_1+k_2}</math>;
* <math>X\biggl(k_1,k_2+\frac{N}{2}\biggr) = S_{00}(k_1,k_2) - S_{01}(k_1,k_2) W_N^{k_2} +S_{10}(k_1,k_2) W_N^{k_1} - S_{11}(k_1,k_2) W_N^{k_1+k_2}</math>;
* <math>X\biggl(k_1+\frac{N}{2},k_2+\frac{N}{2}\biggr) = S_{00}(k_1,k_2) - S_{01}(k_1,k_2) W_N^{k_2} -S_{10}(k_1,k_2) W_N^{k_1} + S_{11}(k_1,k_2) W_N^{k_1+k_2}</math>.
 
== 2-D DIF case ==
Similarly, a decimation-in-frequency ('''DIF''', also called the Sande-TukeySande–Tukey algorithm) algorithm means the decomposition is based on frequency ___domain <math>X</math>, see more in [[Cooley–Tukey FFT algorithm]].
 
Using the change of variables:
Line 37 ⟶ 53:
* <math>k_i=r u_i+v_i</math>, where <math>u_i=0,\ldots,(N/r)-1; v_i = 0,\ldots,r-1;</math>
where <math>i = 1</math> or <math>2</math>, and the DFT equation can be written as:<ref name=Chan92/>
:<math> X(r u_1+v_1,r u_2+v_2)=\sum_{p_1=0}^{N/r-1} \sum_{p_2=0}^{N/r-1} \left[ \sum_{q_1=0}^{r-1} \sum_{q_2=0}^{r-1} x[p_1+q_1 N/r, p_1p_2+q_1q_2 N/r] W_{r}^{q_1 v_1} W_{r}^{q_2 v_2} \right] \cdot W_{N}^{p_1 v_1+p_2 v_2} W_{N/r}^{p_1 u_1} W_{N/r}^{p_2 u_2},</math>
 
== Other approaches ==
The [[Splitsplit-radix FFT algorithm]] has been proved to be a useful method for 1-D DFT. And this method has been applied to the vector-radix FFT to obtain a split vector-radix FFT.<ref name=Chan92/><ref name="Pei87">{{cite journalbook|last1=Pei|first1=Soo-Chang|last2=Wu|first2=Ja-Lin|title=SplitICASSP vector'87. radix 2D fast Fourier transform|journal=IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP|chapter=Split '87.vector radix 2D fast Fourier transform |volume=12|date=April 1987|pages=1987–1990|doi=10.1109/ICASSP.1987.1169345|urls2cid=http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1169345&isnumber=26345118173900 }}</ref>
 
In conventional 2-D vector-radix algorithm, we decompose the indices <math>k_1,k_2</math> into 4 groups:
Line 67 ⟶ 83:
</math>
 
That means the fourth term in 2-D DIT radix-<math>(2\times 2)</math> equation, <math>S_{11}(k_1,k_2) W_{N}^{k_1+k_2}</math> becomes:<ref name="Wu89">{{cite journal|last1=Wu|first1=H.|last2=Paoloni|first2=F.|title=On the two-dimensional vector split-radix FFT algorithm|journal=IEEE Transactions on Acoustics, Speech, and Signal Processing|date=Aug 1989|volume=37|issue=8|pages=1302–1304|doi=10.1109/29.31283|url=http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=31283&isnumber=1348}}</ref>
 
: <math> A_{11}(k_1,k_2) W_N^{k_1+k_2} + A_{13}(k_1,k_2) W_N^{k_1+3 k_2} +A_{31}(k_1,k_2) W_N^{3 k_1+k_2} + A_{33}(k_1,k_2) W_N^{3(k_1+k_2)},</math>
Line 73 ⟶ 89:
where <math>A_{ij}(k_1,k_2)=\sum_{n_1=0}^{N/4-1} \sum_{n_2=0}^{N/4-1} x[4 n_1 + i, 4 n_2 + j] \cdot W_{N/4}^{n_1 k_1} W_{N/4}^{n_2 k_2}</math>
 
The 2-D N by N DFT is then obtained by successive use of the above decomposition, up to the last stage.<br />
 
It has been shown that the split vector radix algorithm has saved about 30% of the complex multiplications and about the same number of the complex additions for typical <math>1024\times 1024</math> array, compared with the vector-radix algorithm.<ref name=Pei87/>