Content deleted Content added
m General fixes via AutoWikiBrowser |
|||
Line 19:
The Toolbox provides functions for manipulating and converting between datatypes such as vectors, [[Transformation matrix|homogeneous transformations]], [[roll-pitch-yaw]] and [[Euler angle|Euler]] angles, [[axis-angle representation]], [[Quaternion|unit-quaternions]], and [[Screw theory#Twist|twists]], which are necessary to represent 3-dimensional position and orientation. It also plots coordinate frames, supports [[Plücker coordinates]] to represent lines, and provides support for [[Lie group]] operations such as logarithm, exponentiation, and conversions to and from [[skew-symmetric matrix]] form.
As the basis of the exercises in several textbooks, the Toolbox is useful for the study and simulation of:<ref>{{cite book|last=Straanowicz|first=Aaron|author2=Gian Luca Mariottini|title=Proceedings of the 4th International Conference on PErvasive Technologies Related to Assistive Environments |chapter=A survey and comparison of commercial and open-source robotic simulator software
* classical arm-type robotics: [[kinematics]], [[Dynamics (mechanics)|dynamics]], and [[Trajectory|trajectory generation]]. The Toolbox uses a very general method of representing the kinematics and dynamics of serial-link manipulators using [[Denavit-Hartenberg parameters]] or [[
*Ground robots and includes: standard path planning algorithms (bug, [[distance transform]], [[D*]], and [[Probabilistic roadmap|PRM]]), lattice planning, kinodynamic planning ([[Rapidly exploring random tree|RRT]]), localization ([[Extended Kalman filter|EKF]], [[particle filter]]), map building ([[Extended Kalman filter|EKF]]) and [[simultaneous localization and mapping]] (using an [[Extended Kalman filter|EKF]] or graph-based method), and a [[Simulink]] model of a non-holonomic vehicle.
* Flying [[quadrotor]] robots, and includes a detailed [[Simulink]] model.
Line 34:
== See also ==
*[[
*[[Robotics simulator]]
|