Content deleted Content added
Added the solution to the lead, so that the reader immediately gets that the answer is "No, from 7825 and up" |
|||
(72 intermediate revisions by 51 users not shown) | |||
Line 1:
{{short description|Can one split the integers into two sets such that every Pythagorean triple spans both?}}
The '''Boolean Pythagorean triples problem''' is a problem from [[Ramsey theory]] about whether the [[natural number|positive integers]] can be colored red and blue so that no [[Pythagorean triple]]s consist of all red or all blue members. The Boolean Pythagorean triples problem was solved by [[Marijn Heule]], Oliver Kullmann and [[Victor W. Marek]] in May 2016 through a [[computer-assisted proof]], which showed that such a coloring is only possible up to the number 7824.<ref name="nature">{{Cite journal|last=Lamb|first=Evelyn|date=26 May 2016|title=Two-hundred-terabyte maths proof is largest ever|journal=Nature|doi=10.1038/nature.2016.19990|volume=534|issue=7605 |pages=17–18|pmid=27251254|bibcode=2016Natur.534...17L|doi-access=free}}</ref>
==Statement==
For example, in the Pythagorean triple 3, 4, and 5 (<math>3^2+4^2=5^2</math>), if 3 and 4 are colored red, then 5 must be colored blue.
{{math theorem| The set {1, . . . , 7824} can be partitioned into two parts, such that no part contains a Pythagorean triple, while this is impossible for {1, . . . , 7825}.<ref name="arXiv"/>}}▼
==Solution==
[[Marijn Heule]], Oliver Kullmann and Victor W. Marek showed that such a coloring is only possible up to the number 7824. The actual statement of the theorem proved is
▲{{math theorem|
}}
There are {{nowrap|2<sup>7825</sup>
[[File:Ptn-7824-zoom-2.png|alt=|center|400x400px]]
==Prize==
In the 1980s [[Ronald Graham]] offered a $100 prize for the solution of the problem, which has now been awarded to [[Marijn Heule]].<ref name="nature"/>
== Generalizations ==
As of 2018, the problem is still open for more than 2 colors, that is, if there exists a ''k''-coloring (''k'' ≥ 3) of the positive integers such that no Pythagorean triples are the same color.<ref>{{Cite journal|last1=Eliahou|first1=Shalom|last2=Fromentin|first2=Jean|last3=Marion-Poty|first3=Virginie|last4=Robilliard|first4=Denis|date=2018-10-02|title=Are Monochromatic Pythagorean Triples Unavoidable under Morphic Colorings?|url=https://www.tandfonline.com/doi/full/10.1080/10586458.2017.1306465|journal=Experimental Mathematics|language=en|volume=27|issue=4|pages=419–425|doi=10.1080/10586458.2017.1306465|issn=1058-6458|arxiv=1605.00859|s2cid=19035265 }}</ref>
== See also ==
* [[List of long mathematical proofs]]
== References ==
Line 16 ⟶ 31:
[[Category:Computer-assisted proofs]]
[[Category:Mathematical problems]]
[[Category:Pythagorean theorem]]
[[Category:Ramsey theory]]
|