Content deleted Content added
history |
Citation bot (talk | contribs) Misc citation tidying. | Use this bot. Report bugs. | #UCB_CommandLine |
||
(41 intermediate revisions by 20 users not shown) | |||
Line 1:
{{Short description|Sub-field of mathematics}}
In [[mathematics]], a '''modular invariant''' of a [[group (mathematics)|group]] is an invariant of a [[finite group]] [[Group action (mathematics)|acting]] on a [[vector space]] of positive characteristic (usually dividing the [[order (group theory)|order]] of the group). The study of modular invariants was originated in about 1914 by {{harvtxt|Dickson|
==Dickson invariant==
When ''G'' is the finite [[general linear group]] GL<sub>''n''</sub>('''F'''<sub>''q''</sub>) over the [[finite field]] '''F'''<sub>''q''</sub> of order a [[prime power]] ''q'' acting on the [[ring (mathematics)|ring]] '''F'''<sub>''q''</sub>[''X''<sub>1</sub>, ...,''X''<sub>''n''</sub>] in the natural way, {{harvtxt|Dickson|1911}} found a complete set of invariants as follows. Write [''e''<sub>1</sub>, ..., ''e''<sub>''n''</sub>] for the [[determinant]] of the [[matrix (mathematics)|matrix]] whose entries are ''X''{{su|b=''i''|p=''q''<sup>''e''<sub>''j''</sub></sup>}}, where ''e''<sub>1</sub>, ..., ''e''<sub>''n''</sub> are non-negative [[integer]]s. For example, the [[Moore determinant over a finite field|Moore determinant]] [0,1,2] of order 3 is
:<math>\begin{vmatrix} x_1 & x_1^q & x_1^{q^2}\\x_2 & x_2^q & x_2^{q^2}\\x_3 & x_3^q & x_3^{q^2} \end{vmatrix}</math>
Then under the action of an element ''g'' of GL<sub>''n''</sub>('''F'''<sub>''q''</sub>) these determinants are all multiplied by det(''g''), so they are all invariants of SL<sub>''n''</sub>('''F'''<sub>''q''</sub>) and the ratios [''e''<sub>1</sub>, ...,''e''<sub>''n''</sub>] / [0, 1, ..., ''n'' − 1] are invariants of GL<sub>''n''</sub>('''F'''<sub>''q''</sub>), called '''Dickson invariants'''. Dickson proved that the full ring of invariants '''F'''<sub>''q''</sub>[''X''<sub>1</sub>, ...,''X''<sub>''n''</sub>]<sup>GL<sub>''n''</sub>('''F'''<sub>''q''</sub>)</sup> is a polynomial algebra over the ''n'' Dickson invariants [0, 1, ..., ''i'' − 1, ''i'' + 1, ..., ''n''] / [0, 1, ..., ''n'' − 1] for ''i'' = 0, 1, ..., ''n'' − 1.
{{harvtxt|Steinberg|1987}} gave a shorter proof of Dickson's theorem.
The matrices [''e''<sub>1</sub>, ..., ''e''<sub>''n''</sub>] are divisible by all non-zero linear forms in the variables ''X''<sub>''i''</sub> with coefficients in the finite field '''F'''<sub>''q''</sub>. In particular the [[Moore determinant over a finite field|Moore determinant]] [0, 1, ..., ''n'' − 1] is a product of such linear forms, taken over 1 + ''q'' + ''q''<sup>2</sup> + ... + ''q''<sup>''n'' – 1</sup> representatives of (''n'' – 1)-dimensional [[projective space]] over the field. This factorization is similar to the factorization of the [[Vandermonde determinant]] into linear factors.
==See also==
*[[
==References==
*{{Citation | last1=Dickson | first1=Leonard Eugene | author1-link=Leonard Eugene Dickson | title=A Fundamental System of Invariants of the General Modular Linear Group with a Solution of the Form Problem | jstor=1988736 | year=1911 | journal=[[Transactions of the American Mathematical Society]] | issn=0002-9947 | volume=12 | issue=1 | pages=75–98 | doi=10.2307/1988736| doi-access=free }}
*{{Citation | last1=Dickson | first1=Leonard Eugene | author1-link=Leonard Eugene Dickson | title=On invariants and the theory of numbers |
*{{Citation | last1=Rutherford | first1=Daniel Edwin | authorlink=Daniel Edwin Rutherford | title=Modular invariants |
*{{Citation | last1=Sanderson | first1=Mildred | authorlink=Mildred Sanderson | title=Formal Modular Invariants with Application to Binary Modular Covariants |
*{{Citation | last1=Steinberg | first1=Robert | authorlink=Robert Steinberg | title=On Dickson's theorem on invariants | url=http://repository.dl.itc.u-tokyo.ac.jp/dspace/bitstream/2261/1682/1/jfs340309.pdf | mr=927606 | year=1987 | journal=Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics | issn=0040-8980 | volume=34 | issue=3 | pages=699–707 | access-date=2010-12-02 | archive-url=https://web.archive.org/web/20120305205421/http://repository.dl.itc.u-tokyo.ac.jp/dspace/bitstream/2261/1682/1/jfs340309.pdf | archive-date=2012-03-05 | url-status=dead }}
{{DEFAULTSORT:Modular Invariant Of A Group}}
▲*{{Citation | last1=Dickson | first1=Leonard Eugene | author1-link=Leonard Eugene Dickson | title=On invariants and the theory of numbers | origyear=1914 | url=http://books.google.com/books?isbn=0486438287 | publisher=[[Dover Publications]] | ___location=New York | series=Dover Phoenix editions | isbn=978-0-486-43828-3 | id={{MR|0201389}} | year=2004}}
▲*{{Citation | last1=Rutherford | first1=Daniel Edwin | title=Modular invariants | origyear=1932 | url=http://www.archive.org/details/modularinvariant033204mbp | publisher=Ramsay Press | series=Cambridge Tracts in Mathematics and Mathematical Physics, No. 27 | isbn=978-1-4067-3850-6 | id={{MR|0186665}} | year=2007}}
▲*{{Citation | last1=Sanderson | first1=Mildred | title=Formal Modular Invariants with Application to Binary Modular Covariants | url=http://www.jstor.org/stable/1988702 | publisher=[[American Mathematical Society]] | ___location=Providence, R.I. | language=English | year=1913 | journal=[[Transactions of the American Mathematical Society]] | issn=0002-9947 | volume=14 | issue=4 | pages=489–500}}
[[Category:Invariant theory]]
|