Content deleted Content added
Wikignometry (talk | contribs) |
Citation bot (talk | contribs) Altered template type. | Use this bot. Report bugs. | #UCB_CommandLine |
||
(44 intermediate revisions by 21 users not shown) | |||
Line 1:
{{Short description|Processing quantum-encoded images}}
'''Quantum image processing
Due to some of the ==Background==
A. Y. Vlasov's work<ref name="Vlasov Quantum 2003">{{cite
In 2003, Salvador Venegas-Andraca and S. Bose presented Qubit Lattice, the first published general model for storing, processing and retrieving images using quantum systems Technically, these pioneering efforts with the subsequent studies related to them can be classified into three main groups:<ref name="Yan Quantum 2017"/>
A survey of quantum image representation has been published in
== Quantum image representations ==
There are various approaches for quantum image representation, that are usually based on the encoding of color information. A common representation is FRQI (''Flexible Representation for Quantum Images''), that captures the color and position at every pixel of the image, and defined as:<ref name=":0">{{Citation |last1=Yan |first1=Fei |title=Quantum Image Representations |date=2020 |work=Quantum Image Processing |pages=19–48 |url=http://link.springer.com/10.1007/978-981-32-9331-1_2 |access-date=2024-10-31 |place=Singapore |publisher=Springer Singapore |language=en |doi=10.1007/978-981-32-9331-1_2 |isbn=978-981-329-330-4 |last2=Venegas-Andraca |first2=Salvador E.|url-access=subscription }}</ref><math display="block">\vert I \rangle = \frac{1}{2^{n}} \sum^{2^{2n-1}}_{i=0} \vert c_{i} \rangle \otimes \vert i \rangle</math>where <math display="inline">| i \rangle </math> is the position and <math display="inline">\vert c_{i} \rangle = cos \theta_{i} \vert 0 \rangle + sin \theta_{i} \vert 1 \rangle</math> the color with a vector of angles <math display="inline">\theta_{i} \in \left[0, \pi/2 \right]</math>. As it can be seen, <math display="inline">\vert c_{i} \rangle </math> is a regular [[Qubit#Qubit states|qubit state]] of the form <math>\vert \psi\rangle = \alpha \vert 0 \rangle + \beta \vert 1 \rangle</math>, with basis states <math display="inline">\vert 0 \rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}</math> and <math display="inline">\vert 1 \rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} </math>, as well as amplitudes <math display="inline">\alpha </math> and <math display="inline">\beta </math> that satisfy <math display="inline">\left|\alpha\right|^{2} + \left|\beta\right|^{2} = 1</math>.<ref>{{Citation |last1=Yan |first1=Fei |title=Introduction and Overview |date=2020 |work=Quantum Image Processing |pages=1–17 |url=http://link.springer.com/10.1007/978-981-32-9331-1_1 |access-date=2024-10-31 |place=Singapore |publisher=Springer Singapore |language=en |doi=10.1007/978-981-32-9331-1_1 |isbn=978-981-329-330-4 |last2=Venegas-Andraca |first2=Salvador E.|url-access=subscription }}</ref>
Another common representation is MCQI (''Multi-Channel Representation for Quantum Images''), that uses the [[RGB color model|RGB]] channels with quantum states and following FRQI definition:<ref name=":0" /><math display="block">\vert I\rangle = \frac{1}{2^{n+1}} \sum^{2^{2n-1}}_{i=0} \vert C^{i}_{RGB}\rangle \otimes \vert i\rangle</math><math display="block">\begin{aligned}
\begin{aligned}
\vert C_{RGB}^i \rangle &=
{\cos \theta_R^i \vert000 \rangle} + {\cos \theta_G^i \vert001 \rangle} + {\cos \theta_B^i \vert010 \rangle} \\ &
\quad + {\sin \theta_R^i \vert100 \rangle} + {\sin \theta_G^i \vert101 \rangle} + {\sin \theta_B^i \vert110 \rangle} \\ &
\quad + {\cos{\theta_\alpha}\vert 011 \rangle} + {\sin\theta_\alpha\vert 111\rangle}
\end{aligned}
\end{aligned}</math>
Departing from the angle-based approach of FRQI and MCQI, and using a qubit sequence, NEQR (''Novel Enhanced Representation for Quantum Images'') is another representation approach, that uses a function <math display="inline">f \left( y,x \right) = C^{q-1}_{yx} C^{q-2}_{yx} \ldots C^{1}_{yx} C^{0}_{yx}</math> to encode color values for a <math>2^n \times 2^n</math> image:<ref name=":0" /><math display="block">\vert I\rangle = \frac{1}{2^{n}} \sum^{2^{n} - 1 }_{y=0} \sum^{2^{n} - 1 }_{x=0} \vert f \left( y,x \right) \rangle \vert yx \rangle</math>
==Quantum image manipulations==
A lot of the effort in QIMP has been focused on designing
To illustrate the feasibility and capability of QIMP algorithms and application, researchers always prefer to simulate the digital image processing tasks on the basis of the QIRs that we already have. By using the basic quantum gates and the aforementioned operations, so far, researchers have contributed to quantum image [[feature extraction]],<ref name="Zhang Local 2015">{{cite journal |title= Local feature point extraction for quantum images |journal= Quantum Information Processing |volume=14 |issue=5 |pages=1573–1588 |year=2015 |last1=Zhang |first1=Y. |last2=Lu |first2=K. |last3= Xu |first3=K. |last4= Gao |first4=Y. |last5= Wilson |first5=R. |doi= 10.1007/s11128-014-0842-7 |bibcode= 2015QuIP...14.1573Z |s2cid= 20213446 }}</ref> quantum [[image segmentation]],<ref name="Caraiman Histogram 2014">{{cite journal |title= Histogram-based segmentation of quantum images |journal= Theoretical Computer Science |volume=529 |pages=46–60 |year=2014 |last1=Caraiman |first1=S. |last2=Manta |first2=V. |doi= 10.1016/j.tcs.2013.08.005 |doi-access=free }}</ref> quantum image morphology,<ref name="Yuan Quantum 2015">{{cite journal |title= Quantum morphology operations based on quantum representation model |journal= Quantum Information Processing |volume=14 |issue=5 |pages=1625–1645 |year=2015 |last1=Yuan |first1=S. |last2=Mao |first2=X. |last3= Li |first3=T. |last4= Xue |first4=Y. |last5= Chen |first5=L. |last6= Xiong |first6=Q.|doi= 10.1007/s11128-014-0862-3 |bibcode= 2015QuIP...14.1625Y |s2cid= 44828546 }}</ref> quantum image comparison,<ref name="Yan A 2013">{{cite journal |title= A parallel comparison of multiple pairs of images on quantum computers |journal= International Journal of Innovative Computing and Applications |volume=5 |issue=4 |pages=199–212 |year=2013 |last1=Yan |first1=F. |last2=Iliyasu |first2=A. |last3= Le |first3=P. |last4= Sun |first4=B. |last5= Dong |first5=F. |last6= Hirota |first6=K.|doi= 10.1504/IJICA.2013.062955 }}</ref> quantum image filtering,<ref name="Caraiman Quantum 2013">{{cite journal |title= Quantum image filtering in the frequency ___domain |journal= Advances in Electrical and Computer Engineering |volume=13 |issue=3 |pages=77–84 |year=2013 |last1=Caraiman |first1=S. |last2=Manta |first2=V. |doi= 10.4316/AECE.2013.03013 |doi-access=free }}</ref> quantum image classification,<ref name="Ruan Quantum 2016">{{cite journal |title= Quantum computation for large-scale image classification |journal= Quantum Information Processing |volume=15 |issue=10|pages=4049–4069 |year=2016 |last1=Ruan |first1=Y. |last2=Chen |first2=H. |last3= Tan |first3=J. |url=https://www.researchgate.net/publication/305644388|doi= 10.1007/s11128-016-1391-z |bibcode= 2016QuIP...15.4049R |s2cid= 27476075 }}</ref> quantum [[image stabilization]],<ref name="Yan Strategy 2016">{{cite journal |title= Strategy for quantum image stabilization |journal= Science China Information Sciences |volume=59 |issue= 5 |pages=052102 |year=2016 |last1=Yan |first1=F. |last2=Iliyasu |first2=A. |last3= Yang |first3=H. |last4= Hirota |first4=K. |doi= 10.1007/s11432-016-5541-9 |s2cid= 255200782 |doi-access=
In general, the work pursued by the researchers in this area are focused on expanding the applicability of QIMP to realize more classical-like digital image processing algorithms; propose technologies to physically realize the QIMP hardware; or simply to note the likely challenges that could impede the realization of some QIMP protocols.
==Quantum image transform==
By [[encoding]] and processing the image information in [[Quantum mechanics|quantum-mechanical]] systems, a framework of quantum image processing is presented, where a pure [[quantum state]] encodes the image information: to encode the [[pixel]] values in the probability amplitudes and the pixel positions in the computational basis states.
Given an image <math>F=(F_{i,j})_{M \times L}</math>, where <math>F_{i,j}</math> represents the pixel value at position <math>(i,j)</math> with <math>i = 1,\dots,M</math> and <math>j = 1,\dots,L</math>, a vector <math>\vec{f}</math> with <math>ML</math> elements can be formed by letting the first <math>M</math> elements of <math>\vec{f}</math> be the first column of <math>F</math>, the next <math>M</math> elements the second column, etc.
A large class of image operations is [[linear]], e.g., unitary transformations, convolutions, and linear filtering. In the quantum computing, the linear transformation can be represented as <math>|g\rangle =\hat{U} |f\rangle </math> with the input image state <math>|f\rangle </math> and the output image state <math>|g\rangle </math>. A unitary transformation can be implemented as a unitary evolution.
==See also==
Line 38 ⟶ 58:
{{Reflist|30em|refs=
<ref name="2017_Yao">{{cite journal | last1 = Yao | first1 = Xi-Wei | last2 = Wang | first2 = Hengyan | last3 = Liao | first3 = Zeyang | last4 = Chen | first4 = Ming-Cheng | last5 = Pan | first5 = Jian | last6 = Li | first6 = Jun | last7 = Zhang | first7 = Kechao | last8 = Lin | first8 = Xingcheng | last9 = Wang | first9 = Zhehui | last10 = Luo | first10 = Zhihuang | last11 = Zheng | first11 = Wenqiang | last12 = Li | first12 = Jianzhong | last13 = Zhao | first13 = Meisheng | last14 = Peng | first14 = Xinhua | last15 = Suter | first15 = Dieter | display-authors = 5 | date = 2017-09-11 | title = Quantum Image Processing and Its Application to Edge Detection: Theory and Experiment | journal = [[Physical Review X]] | language = en
}}
[[Category:Quantum computing]]
[[Category:Image processing]]
|