Content deleted Content added
m Fix citation →Applications |
m Open access bot: url-access=subscription updated in citation with #oabot. |
||
(46 intermediate revisions by 13 users not shown) | |||
Line 1:
In [[
This differs from other techniques in [[
▲In [[Regression analysis]], an '''Interval Predictor Model''' (IPM) is an approach to regression where bounds on the function to be approximated are obtained.
▲This differs from other techniques in [[Machine Learning]], where usually one wishes to estimate point values or an entire probability distribution.
Interval Predictor Models are sometimes referred to as a [[nonparametric regression]] technique, because a potentially infinite set of functions are contained by the IPM, and no specific distribution is implied for the regressed variables.
As a consequence of the theory of [[Scenario Optimization]], in many cases rigorous predictions can be made regarding the performance of the model at test time <ref name="CampiCalafiore2009">{{cite journal|last1=Campi|first1=M.C.|last2=Calafiore|first2=G.|last3=Garatti|first3=S.|title=Interval predictor models: Identification and reliability|journal=Automatica|volume=45|issue=2|year=2009|pages=382–392|issn=00051098|doi=10.1016/j.automatica.2008.09.004}}</ref>. ▼
Hence an Interval Predictor Model can be seen as a guaranteed bound on [[quantile regression]].▼
Multiple-input multiple-output IPMs for multi-point data commonly used to represent functions have been recently developed.<ref>{{cite book | doi=10.1109/CDC45484.2021.9683582 | chapter=Interval Predictor Models for Robust System Identification | title=2021 60th IEEE Conference on Decision and Control (CDC) | year=2021 | last1=Crespo | first1=Luis G. | last2=Kenny | first2=Sean P. | last3=Colbert | first3=Brendon K. | last4=Slagel | first4=Tanner | pages=872–879 | isbn=978-1-6654-3659-5 | s2cid=246479771 }}</ref> These IPM prescribe the parameters of the model as a path-connected, semi-algebraic set using sliced-normal <ref>{{cite journal |last1=Crespo |first1=Luis |last2=Colbert |first2=Brendon |last3=Kenny |first3=Sean |last4=Giesy |first4=Daniel |title=On the quantification of aleatory and epistemic uncertainty using Sliced-Normal distributions |journal=Systems and Control Letters |date=2019 |volume=34 |page=104560 |doi=10.1016/j.sysconle.2019.104560 |s2cid=209339118 |url=https://doi.org/10.1016/j.sysconle.2019.104560|url-access=subscription }}</ref> or sliced-exponential distributions.<ref>{{cite book | doi=10.1109/CDC45484.2021.9683584 | chapter=Robust Estimation of Sliced-Exponential Distributions<sup>⋆</sup> | title=2021 60th IEEE Conference on Decision and Control (CDC) | year=2021 | last1=Crespo | first1=Luis G. | last2=Colbert | first2=Brendon K. | last3=Slager | first3=Tanner | last4=Kenny | first4=Sean P. | pages=6742–6748 | isbn=978-1-6654-3659-5 | s2cid=246476974 }}</ref> A key advantage of this approach is its ability to characterize complex parameter dependencies to varying fidelity levels. This practice enables the analyst to adjust the desired level of conservatism in the prediction.
Typically the Interval Predictor Model is created by specifying a parametric function, which is usually chosen to be the product of a parameter vector and a basis.▼
▲As a consequence of the theory of [[
▲Hence an
Interval predictor models can also be seen as a way to prescribe the [[Support_(mathematics)#Support_of_a_distribution|support]] of random predictor models, of which a [[Gaussian process]] is a specific case
.<ref name="CrespoKenny2018">{{cite journal|last1=Crespo|first1=Luis G.|last2=Kenny|first2=Sean P.|last3=Giesy|first3=Daniel P.|title=Staircase predictor models for reliability and risk analysis|journal=Structural Safety|volume=75|year=2018|pages=35–44|issn=
== Convex interval predictor models ==
▲Typically the
Usually the basis is made up of polynomial features or a radial basis is sometimes used.
Then a convex set is assigned to the parameter vector, and the size of the convex set is minimized such that every possible data point can be predicted by one possible value of the parameters.
Ellipsoidal parameters sets were used by Campi (2009), which yield a convex optimization program to train the IPM
Crespo (2016) proposed the use of a hyperrectangular parameter set, which results in a convenient, linear form for the bounds of the IPM.<ref name="CrespoKenny2016">{{cite journal|last1=Crespo|first1=Luis G.|last2=Kenny|first2=Sean P.|last3=Giesy|first3=Daniel P.|title=Interval Predictor Models With a Linear Parameter Dependency|journal=Journal of Verification, Validation and Uncertainty Quantification|volume=1|issue=2|year=2016|pages=021007|issn=2377-2158|doi=10.1115/1.4032070}}</ref>
:<math>
\operatorname{arg\,min}_p
</math>
where the training data examples are <math> y^{(i)}</math> and <math> x^{(i)}</math>, and the Interval Predictor Model bounds <math> \underline{y}_p(x)</math> and <math>\overline{y}_p(x) </math> are parameterised by the parameter vector <math> p </math>.
The reliability of such an IPM is obtained by noting that for a convex IPM the number of support constraints is less than the dimensionality of the [[trainable
Lacerda (2017) demonstrated that this approach can be extended to situations where the training data is interval valued rather than point valued
== Non-convex
In Campi (2015) a non-convex theory of scenario optimization was proposed
This involves measuring the number of support constraints, <math>S</math>, for the Interval Predictor Model after training and hence making predictions about the reliability of the model.
This enables non-convex IPMs to be created, such as a single layer neural network.
Campi (2015) demonstrates that an algorithm
This is achieved by
:<math>
\
</math>
where the
Sadeghi (2019) demonstrates that the non-convex scenario approach from Campi (2015) can be extended to train deeper
This is achieved by proposing generalizations to the max-error loss function given by
:<math>
\mathcal{L}_{\text{max-error}} = \max_i |y^{(i)}-\hat{y}_p(x^{(i)})|,
</math>
which is equivalent to solving the optimisation program proposed by Campi (2015).
== Applications ==
Initially, [[
In Patelli (2017), Faes (2019), and Crespo (2018), Interval Predictor models were applied to the [[Structural reliability]] analysis problem <ref name="PatelliBroggi2017">{{cite journal|last1=Patelli|first1=Edoardo|last2=Broggi|first2=Matteo|last3=Tolo|first3=Silvia|last4=Sadeghi|first4=Jonathan|title=COSSAN SOFTWARE: A MULTIDISCIPLINARY AND COLLABORATIVE SOFTWARE FOR UNCERTAINTY QUANTIFICATION|year=2017|pages=212–224|doi=10.7712/120217.5364.16982}}</ref>▼
▲<ref name="CrespoKenny2018">{{cite journal|last1=Crespo|first1=Luis G.|last2=Kenny|first2=Sean P.|last3=Giesy|first3=Daniel P.|title=Staircase predictor models for reliability and risk analysis|journal=Structural Safety|volume=75|year=2018|pages=35–44|issn=01674730|doi=10.1016/j.strusafe.2018.05.002}}</ref>
<ref name="FaesSadeghi2019">{{cite journal|last1=Faes|first1=Matthias|last2=Sadeghi|first2=Jonathan|last3=Broggi|first3=Matteo|last4=De Angelis|first4=Marco|last5=Patelli|first5=Edoardo|last6=Beer|first6=Michael|last7=Moens|first7=David|title=On the robust estimation of small failure probabilities for strong non-linear models|journal=ASCE-ASME J. Risk and Uncert. in Engrg. Sys., Part B: Mech. Engrg.|year=2019|issn=2332-9017|doi=10.1115/1.4044044}}</ref>.▼
Brandt (2017) applies Interval Predictor Models to fatigue damage estimation of offshore wind turbines jacket substructures <ref name="BrandtBroggi2017">{{cite journal|last1=Brandt|first1=Sebastian|last2=Broggi|first2=Matteo|last3=Hafele|first3=Jan|last4=Guillermo Gebhardt|first4=Cristian|last5=Rolfes|first5=Raimund|last6=Beer|first6=Michael|title=Meta-models for fatigue damage estimation of offshore wind turbines jacket substructures|journal=Procedia Engineering|volume=199|year=2017|pages=1158–1163|issn=18777058|doi=10.1016/j.proeng.2017.09.292}}</ref>.▼
Crespo (2015) and (2021) applied Interval Predictor Models to the design of space radiation shielding <ref name="CrespoKenny2016a">{{cite book|last1=Crespo|first1=Luis G.|title=18th AIAA Non-Deterministic Approaches Conference|last2=Kenny|first2=Sean P.|last3=Giesy|first3=Daniel P.|last4=Norman|first4=Ryan B.|last5=Blattnig|first5=Steve|chapter=Application of Interval Predictor Models to Space Radiation Shielding|year=2016|doi=10.2514/6.2016-0431|isbn=978-1-62410-397-1|hdl=2060/20160007750|s2cid=124192684 }}</ref> and to system identification.<ref>{{cite book | doi=10.1109/CDC45484.2021.9683582 | chapter=Interval Predictor Models for Robust System Identification | title=2021 60th IEEE Conference on Decision and Control (CDC) | year=2021 | last1=Crespo | first1=Luis G. | last2=Kenny | first2=Sean P. | last3=Colbert | first3=Brendon K. | last4=Slagel | first4=Tanner | pages=872–879 | isbn=978-1-6654-3659-5 | s2cid=246479771 }}</ref>
== Software Implementations ==▼
▲In Patelli (2017), Faes (2019), and Crespo (2018), Interval Predictor models were applied to the [[
<ref name="CrespoKenny2018"/>
▲<ref name="FaesSadeghi2019">{{cite journal|last1=Faes|first1=Matthias|last2=Sadeghi|first2=Jonathan|last3=Broggi|first3=Matteo|last4=De Angelis|first4=Marco|last5=Patelli|first5=Edoardo|last6=Beer|first6=Michael|last7=Moens|first7=David|title=On the robust estimation of small failure probabilities for strong non-linear models|journal=ASCE-ASME
▲Brandt (2017) applies
Garatti (2019) proved that Chebyshev layers (i.e., the minimax layers around functions fitted by linear <math>\ell_\infty</math>-regression) belong to a particular class of Interval Predictor Models, for which the reliability is invariant with respect to the distribution of the data.<ref name="GarCamCar2019">{{cite journal|last1=Garatti|first1=S.|last2=Campi|first2=M.C.|last3=Carè|first3=A.|title=On a class of Interval Predictor Models with universal reliability|journal=Automatica|volume=110|year=2019|page=108542|issn=0005-1098|doi=10.1016/j.automatica.2019.108542|hdl=11311/1121161 |s2cid=204188183 |hdl-access=free}}</ref>
OpenCOSSAN provides a Matlab implementation of the work of Crespo (2015).<ref name="PatelliBroggi2017" />
== References ==
{{Reflist}}
[[Category:Regression analysis| ]]
|