Linear elasticity: Difference between revisions

Content deleted Content added
Tags: Mobile edit Mobile web edit
ce
 
(24 intermediate revisions by 16 users not shown)
Line 3:
{{Continuum mechanics|solid}}
 
'''Linear elasticity''' is a mathematical model of how solid objects [[deformation (physics)|deform]] and become internally [[stress (mechanics)|stressed]] due toby prescribed loading conditions. It is a simplification of the more general [[Finite strain theory|nonlinear theory of elasticity]] and a branch of [[continuum mechanics]].
 
The fundamental "linearizing" assumptions of linear elasticity are: [[Infinitesimal strain theory|infinitesimal strains]] or— meaning, "small" deformations (or strains)— and linear relationships between the components of stress and strain. In— additionhence the "linear" in its name. Linear elasticity is valid only for stress states that do not produce [[Yield (engineering)|yielding]]. Its assumptions are reasonable for many engineering materials and engineering design scenarios. Linear elasticity is therefore used extensively in [[structural analysis]] and engineering design, often with the aid of [[finite element analysis]].
 
These assumptions are reasonable for many engineering materials and engineering design scenarios. Linear elasticity is therefore used extensively in [[structural analysis]] and engineering design, often with the aid of [[finite element analysis]].
 
==Mathematical formulation==
 
Equations governing a linear elastic [[boundary value problem]] are based on three [[tensor]] [[partial differential equation]]s for the [[conservation of momentum|balance of linear momentum]] and six [[infinitesimal strain]]-[[displacement field (mechanics)|displacement]] relations. The system of differential equations is completed by a set of [[linear equation|linear]] algebraic [[constitutive equations|constitutive relations]].
 
=== Direct tensor form ===
In direct [[tensor]] form that is independent of the choice of coordinate system, these governing equations are:<ref name="Slau">{{Cite book |last=Slaughter, W.|first=William S., (2002),|url=http://link.springer.com/10.1007/978-1-4612-0093-2 ''|title=The linearizedLinearized theoryTheory of elasticity''Elasticity |date=2002 |publisher=Birkhäuser Boston |isbn=978-1-4612-6608-2 |___location=Boston, BirkhauserMA |language=en |doi=10.1007/978-1-4612-0093-2}}</ref>
 
* [[Cauchy momentum equation]], which is an expression of [[Newton's laws of motion#Newton's second law|Newton's second law]]. In convective form it is written as: <math display="block">\boldsymbol{\nabla} \cdot \boldsymbol{\sigma} + \mathbf{F} = \rho \ddot{\mathbf{u}} </math>
Line 20 ⟶ 18:
* [[Constitutive equations]]. For elastic materials, [[Hooke's law]] represents the material behavior and relates the unknown stresses and strains. The general equation for Hooke's law is <math display="block"> \boldsymbol{\sigma} = \mathsf{C}:\boldsymbol{\varepsilon},</math>
 
where <math>\boldsymbol{\sigma}</math> is the [[Cauchy stress tensor]], <math>\boldsymbol{\varepsilon}</math> is the [[infinitesimal strain]] tensor, <math>\mathbf{u}</math> is the [[Displacement (vector)|displacement vector]], <math>\mathsf{C}</math> is the fourth-order [[stiffness tensor]], <math>\mathbf{F}</math> is the body force per unit volume, <math>\rho</math> is the mass density, <math>\boldsymbol{\nabla}</math> represents the [[nabla operator]], <math>(\bullet)^\mathrm{T}</math> represents a [[transpose]], <math>\ddot{(\bullet)}</math> represents the second [[material derivative]] with respect to time, and <math>\mathsf{A}:\mathsf{B} = A_{ij}B_{ij}</math> is the inner product of two second-order tensors (summation over repeated indices is implied).
 
=== Cartesian coordinate form ===
{{Einstein_summation_convention}}
Expressed in terms of components with respect to a rectangular [[Cartesian coordinate]] system, the governing equations of linear elasticity are:<ref name="Slau" />
 
* [[Cauchy momentum equation|Equation of motion]]: <math display="block"> \sigma_{ji,j} + F_i = \rho \partial_{tt} u_i</math> where the <math>{(\bullet)}_{,j}</math> subscript is a shorthand for <math>\partial{(\bullet)} / \partial x_j</math> and <math>\partial_{tt}</math> indicates <math>\partial^2 / \partial t^2</math>, <math> \sigma_{ij} = \sigma_{ji}</math> is the Cauchy [[Stress (physics)|stress]] tensor, <math> F_i</math> is the body force density, <math> \rho</math> is the mass density, and <math> u_i</math> is the displacement.{{pb}}These are 3 [[System of linear equations#Independence|independent]] equations with 6 independent unknowns (stresses).{{pb}} In engineering notation, they are: <math display="block">\begin{align}
Line 44 ⟶ 42:
* [[Constitutive equations]]. The equation for Hooke's law is: <math display="block"> \sigma_{ij} = C_{ijkl} \, \varepsilon_{kl} </math> where <math>C_{ijkl}</math> is the stiffness tensor. These are 6 independent equations relating stresses and strains. The requirement of the symmetry of the stress and strain tensors lead to equality of many of the elastic constants, reducing the number of different elements to 21<ref>{{cite journal |last1=Belen'kii |last2= Salaev|date= 1988|title= Deformation effects in layer crystals|journal= Uspekhi Fizicheskikh Nauk|volume= 155|issue= 5|pages= 89–127|doi= 10.3367/UFNr.0155.198805c.0089|doi-access= free}}</ref> <math> C_{ijkl} = C_{klij} = C_{jikl} = C_{ijlk}</math>.
 
An elastostatic boundary value problem for an isotropic-homogeneous media is a system of 15 independent equations and equal number of unknowns (3 equilibrium equations, 6 strain-displacement equations, and 6 constitutive equations). SpecifyingBy specifying the boundary conditions, the boundary value problem is completelyfully defined. To solve the system two approaches can be taken according to boundary conditions of the boundary value problem: a '''displacement formulation''', and a '''stress formulation'''.
 
===Cylindrical coordinate form===
In cylindrical coordinates (<math>r,\theta,z</math>) the equations of motion are<ref name="Slau" />
<math display="block">\begin{align}
& \frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r}\frac{\partial \sigma_{r\theta}}{\partial \theta} + \frac{\partial \sigma_{rz}}{\partial z} + \cfrac{1}{r}(\sigma_{rr}-\sigma_{\theta\theta}) + F_r = \rho~\frac{\partial^2 u_r}{\partial t^2} \\
Line 62 ⟶ 60:
\varepsilon_{zr} = \cfrac{1}{2} \left(\cfrac{\partial u_r}{\partial z} + \cfrac{\partial u_z}{\partial r}\right)
\end{align}</math>
and the constitutive relations are the same as in Cartesian coordinates, except that the indices <math>1</math>,<math>2</math>,<math>3</math> now stand for <math>r</math>,<math>\theta</math>,<math>z</math>, respectively.
 
=== Spherical coordinate form ===
In spherical coordinates (<math>r,\theta,\phi</math>) the equations of motion are<ref name="Slau" />
<math display="block">\begin{align}
& \frac{\partial \sigma_{rr}}{\partial r} + \cfrac{1}{r}\frac{\partial \sigma_{r\theta}}{\partial \theta} + \cfrac{1}{r\sin\theta}\frac{\partial \sigma_{r\phi}}{\partial \phi} + \cfrac{1}{r} (2\sigma_{rr}-\sigma_{\theta\theta}-\sigma_{\phi\phi}+\sigma_{r\theta}\cot\theta) + F_r = \rho~\frac{\partial^2 u_r}{\partial t^2} \\
Line 83 ⟶ 81:
 
== (An)isotropic (in)homogeneous media ==
In [[Hooke's Lawlaw#Isotropic materials|isotropic]] media, the stiffness tensor gives the relationship between the stresses (resulting internal stresses) and the strains (resulting deformations). For an isotropic medium, the stiffness tensor has no preferred direction: an applied force will give the same displacements (relative to the direction of the force) no matter the direction in which the force is applied. In the isotropic case, the stiffness tensor may be written:{{citation needed|date=June 2012}} <math display="block"> C_{ijkl}
= K \, \delta_{ij}\, \delta_{kl}
+ \mu\, (\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}- \tfrac{2}{3}\, \delta_{ij}\,\delta_{kl})
Line 89 ⟶ 87:
<math display="block"> \sigma_{ij} = K \delta_{ij} \varepsilon_{kk} + 2\mu \left(\varepsilon_{ij} - \tfrac{1}{3} \delta_{ij} \varepsilon_{kk}\right).</math>
 
This expression separates the stress into a scalar part on the left which may be associated with a scalar pressure, and a traceless part on the right which may be associated with shear forces. A simpler expression is:<ref name="aki">{{citeCite book |titlelast1=Aki Quantitative Seismology|first1=Keiiti |last1author-link1=Keiiti Aki |first1title=KeiitiQuantitative seismology |last2=Richards |first2= Paul G. | author-link1=Keiiti Aki |author2-linklink2=Paul G. richards |publisher=University Science Books |year=2002 |isbn=978-1-891389-63-4 |edition= 2| publisher=University Science Books |___location=SausalitoMill Valley, California}}</ref><ref>Continuum Mechanics for Engineers 2001 Mase, Eq. 5.12-2</ref>
<math display="block"> \sigma_{ij} = \lambda \delta_{ij} \varepsilon_{kk}+2\mu\varepsilon_{ij}</math>
where λ is [[Lamé parameters|Lamé's first parameter]]. Since the constitutive equation is simply a set of linear equations, the strain may be expressed as a function of the stresses as:<ref name=sommerfeld>{{cite book |title= Mechanics of Deformable Bodies |last=Sommerfeld|first=Arnold |author-link=Arnold Sommerfeld|year=1964 |publisher=Academic Press |___location=New York}}</ref>
<math display="block">\varepsilon_{ij} = \frac{1}{9K} \delta_{ij} \sigma_{kk} + \frac{1}{2\mu} \left(\sigma_{ij} - \tfrac{1}{3} \delta_{ij} \sigma_{kk}\right)</math>
which is again, a scalar part on the left and a traceless shear part on the right. More simply:
Line 108 ⟶ 106:
====Displacement formulation====
In this case, the displacements are prescribed everywhere in the boundary. In this approach, the strains and stresses are eliminated from the formulation, leaving the displacements as the unknowns to be solved for in the governing equations.
First, the strain-displacement equations are substituted into the constitutive equations (Hooke's Lawlaw), eliminating the strains as unknowns:
<math display="block">\sigma_{ij} = \lambda \delta_{ij} \varepsilon_{kk}+2\mu\varepsilon_{ij}
= \lambda\delta_{ij}u_{k,k}+\mu\left(u_{i,j}+u_{j,i}\right).
Line 140 ⟶ 138:
 
These last 3 equations are the steady Navier–Cauchy equations, which can be also expressed in vector notation as
<math display="block">(\lambda+\mu) \nabla(\nabla \cdot \mathbf{u}) + \mu \nabla^2\mathbf{u} + \mathbf{F} = \boldsymbol{0}</math>
}}
 
Line 182 ⟶ 180:
<math display="block"> (1+\nu)\sigma_{ij,kk}+\sigma_{kk,ij}=0.</math>
 
A necessary, but insufficient, condition for compatibility under this situation is <math>\boldsymbol{\nabla}^4\boldsymbol{\sigma} = \boldsymbol{0}</math> or <math>\sigma_{ij,kk\ell\ell} = 0</math>.<ref name="Slau" />
 
These constraints, along with the equilibrium equation (or equation of motion for elastodynamics) allow the calculation of the stress tensor field. Once the stress field has been calculated from these equations, the strains can be obtained from the constitutive equations, and the displacement field from the strain-displacement equations.
Line 192 ⟶ 190:
===== Thomson's solution - point force in an infinite isotropic medium =====
 
TheThomson's solution or Kelvin's solution is the most important solution of the Navier–Cauchy or elastostatic equation is for that of a force acting at a point in an infinite isotropic medium. This solution was found by [[William Thomson, 1st Baron Kelvin|William Thomson]] (later Lord Kelvin) in 1848 (Thomson 1848). This solution is the analog of [[Coulomb's law]] in [[electrostatics]]. A derivation is given in Landau & Lifshitz.<ref name="LL">{{cite book |title=Theory of Elasticity |edition=3rd|last=Landau |first=L.D. |author-link=Lev Landau |author2=Lifshitz, E. M. |author-link2=Evgeny Lifshitz |year=1986 |publisher=Butterworth Heinemann |___location=Oxford, England |isbn=0-7506-2633-X }}</ref>{{rp|§8}} Defining
<math display="block">a = 1-2\nu</math>
<math display="block">b = 2(1-\nu) = a+1</math>
Line 229 ⟶ 227:
It can be seen that there is a component of the displacement in the direction of the force, which diminishes, as is the case for the potential in electrostatics, as 1/''r'' for large ''r''. There is also an additional ρ-directed component.
 
======Frequency ___domain Green's function======
===== Boussinesq–Cerruti solution - point force at the origin of an infinite isotropic half-space =====
Another useful solution is that of a point force acting on the surface of an infinite half-space. It was derived by Boussinesq<ref>{{cite book |title= Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques |last=Boussinesq|first=Joseph |author-link=Joseph Boussinesq |year=1885 |publisher=Gauthier-Villars |___location=Paris, France |url=http://name.umdl.umich.edu/ABV5032.0001.001 }}</ref> for the normal force and Cerruti for the tangential force and a derivation is given in Landau & Lifshitz.<ref name=LL/>{{rp|§8}} In this case, the solution is again written as a Green's tensor which goes to zero at infinity, and the component of the stress tensor normal to the surface vanishes. This solution may be written in Cartesian coordinates as [recall: <math>a=(1-2\nu)</math> and <math>b=2(1-\nu)</math>, <math>\nu</math> = Poisson's ratio]:
 
Rewrite the Navier-Cauchy equations in component form<ref>{{cite web |last=Bouchbinder |first=Eran |title= Linear Elasticity I (Non‑Equilibrium Continuum Physics)|url=https://www.weizmann.ac.il/chembiophys/bouchbinder/sites/chemphys.bouchbinder/files/uploads/Courses/2021/TAs/TA4-Linear_elasticity-I.pdf |website=Weizmann Institute of Science |publisher=Department of Chemical and Biological Physics |date=5 May 2021 |access-date=20 May 2025}}</ref>
<math display="block">G_{ik} = \frac{1}{4\pi\mu} \begin{bmatrix}
 
<math display="block">(\lambda + \mu)\partial_i \partial_j u_j +\mu\partial_j\partial_j u_i =-F_i</math>
 
Convert this to frequency ___domain, where derivative <math> \partial_i</math> maps to <math>\sqrt{-1}q_i</math>, where <math>q</math> is the wave vector
<math display="block">(\lambda + \mu)q_i q_j u_j +\mu|q|^2u_i =F_i</math>
 
Spatial frequency ___domain force to displacement Green's function is the inverse of the above
 
<math>G_{ij}(q) = \frac{1}{\mu}\bigg[\frac{\delta_{ij}}{|q|^2} -\frac{1}{b}\frac{q_iq_j}{|q|^4}\bigg]</math>
 
The stress to strain Green's function <math>\Gamma</math> is<ref>{{cite journal | last1=Moulinec | first1=H. | last2=Suquet | first2=P. | title=A fast numerical method for computing the linear and nonlinear mechanical properties of composites | journal=Comptes Rendus de l'Académie des Sciences, Série II | volume=318 | pages=1417–1423 | year=1994 | url=https://lma-software-craft.cnrs.fr/wp-content/uploads/2020/11/CRAS_Moulinec_Suquet_1994.pdf | access-date=2025-05-17}}</ref>
<math>\Gamma_{khij} = \frac{1}{4\mu |q|^2}(\delta_{ki}q_hq_j+\delta_{hi}q_kq_j+\delta_{kj}q_hq_i+\delta_{hj}q_kq_i) -\frac{\lambda+\mu}{\mu(\lambda+2\mu)}\frac{q_iq_jq_kq_h}{|q|^4}</math>
 
where <math>\epsilon_{kh} = \Gamma_{khij}\sigma_{ij}</math>
 
===== Boussinesq–Cerruti solution - point force at the origin of an infinite isotropic half-space =====
Another useful solution is that of a point force acting on the surface of an infinite half-space.<ref name="tribonet" /> It was derived by Boussinesq<ref>{{cite book |title= Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques |last=Boussinesq |first=Joseph |author-link=Joseph Boussinesq |year=1885 |publisher=Gauthier-Villars |___location=Paris, France |url=http://name.umdl.umich.edu/ABV5032.0001.001 |archive-date=2024-09-03 |access-date=2007-12-19 |archive-url=https://web.archive.org/web/20240903234441/https://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=ABV5032.0001.001 |url-status=live }}</ref> for the normal force and Cerruti for the tangential force and a derivation is given in Landau & Lifshitz.<ref name="LL" />{{rp|§8}} In this case, the solution is again written as a Green's tensor which goes to zero at infinity, and the component of the stress tensor normal to the surface vanishes. This solution may be written in Cartesian coordinates as [recall: <math>a=(1-2\nu)</math> and <math>b=2(1-\nu)</math>, <math>\nu</math> = Poisson's ratio]:
 
<math display="block">G_{ik} = \frac{1}{4\pi\mu} \begin{bmatrixr}
\frac{b}{r}+\frac{x^2}{r^3}-\frac{ax^2}{r(r+z)^2}-\frac{az}{r(r+z)} &
\begin{bmatrix}
\frac{xy}{r^3}-\frac{axy}{r(r+z)^2}&
\frac{xzb r + z}{r^3 + z}- + \frac{ax(2 r (\nu r + z) + z^2) x^2}{r^2 (r + z)^2}\\ &
\frac{(2 r (\nu r + z) + z^2) x y}{r^2 (r + z)^2} &
\frac{xyx z}{r^32} - \frac{axya x}{r(r + z)^2}& \\
 
\frac{yx}{(2 r^3} -(\frac{ayxnu r + z) + z^2) y x}{r^2 (r + z)^2} &
\frac{b}{ r} +\frac{y^2 z}{r^3 + z}- + \frac{ay^(2}{ r (\nu r + z) + z^2) y^2}-\frac{az}{r^2 (r + z)^2} &
\frac{yzy z}{r^32} - \frac{aya y}{r(r + z)} \\
 
\frac{zxz x}{r^32}- + \frac{axa x}{r(r + z)} &
\frac{zyz y}{r^32}- + \frac{aya y}{r(r + z)} &
\frac{b}{r} + \frac{z^2}{r^32}
\end{bmatrix}
</math>
 
===== Other solutions =====
* Point force inside an infinite isotropic half-space.<ref>{{cite journal |last=Mindlin |first= R. D.|author-link=Raymond D. Mindlin |year=1936|title=Force at a point in the interior of a semi-infinite solid |journal=Physics |volume=7| issue= 5| pages=195–202 |url= http://www.dtic.mil/get-tr-doc/pdf?AD=AD0012375|archive-url= https://web.archive.org/web/20170923074956/http://www.dtic.mil/get-tr-doc/pdf?AD=AD0012375|url-status= dead|archive-date= September 23, 2017|doi=10.1063/1.1745385 |bibcode = 1936Physi...7..195M |url-access=subscription}}</ref>
* Point force on a surface of an isotropic half-space.<ref name="tribonet"/>
* Contact of two elastic bodies: the Hertz solution (see [http://www.tribonet.org/cmdownloads/hertz-contact-calculator/ Matlab code]).<ref>{{cite journal |last=Hertz |first= Heinrich|author-link=Heinrich Hertz |year=1882 |title=Contact between solid elastic bodies |journal=Journal für die reine und angewandte Mathematik|volume=92}}</ref> See also the page on [[Contact mechanics]].
 
=== Elastodynamics in terms of displacements ===
{{Expand section|more principles, a brief explanation to each type of wave|discuss=Talk:Linear elasticity#New section needed|date=September 2010}}
Elastodynamics is the study of '''elastic waves''' and involves linear elasticity with variation in time. An '''elastic wave''' is a type of [[mechanical wave]] that propagates in elastic or [[viscoelasticity|viscoelastic]] materials. The elasticity of the material provides the restoring [[force]] of the wave. When they occur in the [[Earth]] as the result of an [[earthquake]] or other disturbance, elastic waves are usually called [[seismic wave]]s.
 
The linear momentum equation is simply the equilibrium equation with an additional inertial term:
Line 263 ⟶ 278:
<math display="block">\left( C_{ijkl} u_{(k},_{l)}\right) ,_{j}+F_{i}=\rho \ddot{u}_{i}.</math>
 
If the material is isotropic and homogeneous, one obtains the (general, or transient) '''Navier–Cauchy equation''':
<math display="block">
\mu u_{i,jj} + (\mu+\lambda)u_{j,ij}+F_i=\rho\partial_{tt}u_i
Line 275 ⟶ 290:
is the ''acoustic differential operator'', and <math> \delta_{kl}</math> is [[Kronecker delta]].
 
In [[Hooke's Lawlaw#Isotropic materials|isotropic]] media, the stiffness tensor has the form
<math display="block"> C_{ijkl}
= K \, \delta_{ij}\, \delta_{kl}
Line 290 ⟶ 305:
 
=== Elastodynamics in terms of stresses ===
Elimination of displacements and strains from the governing equations leads to the '''Ignaczak equation of elastodynamics'''<ref name=OS>[[Ostoja-Starzewski, M.]], (2018), ''Ignaczak equation of elastodynamics'', Mathematics and Mechanics of Solids. {{doi|10.1177/1081286518757284}}</ref>
<math display="block">\left( \rho ^{-1} \sigma _{(ik},_{k}\right) ,_{j)} - S_{ijkl} \ddot{\sigma}_{kl} + \left( \rho ^{-1} F_{(i}\right) ,_{j)} = 0.</math>
 
Line 396 ⟶ 411:
*[[Castigliano's method]]
*[[Cauchy momentum equation]]
*[[Clapeyron's theorem (elasticity)]]
*[[Contact mechanics]]
*[[Deformation (mechanics)|Deformation]]
Line 412 ⟶ 427:
 
== References ==
{{Reflistreflist}}
 
{{Authority control}}