Content deleted Content added
update the Boussinesq–Cerruti solution with the correct version in Landau & Lifshitz |
ce |
||
(10 intermediate revisions by 5 users not shown) | |||
Line 87:
<math display="block"> \sigma_{ij} = K \delta_{ij} \varepsilon_{kk} + 2\mu \left(\varepsilon_{ij} - \tfrac{1}{3} \delta_{ij} \varepsilon_{kk}\right).</math>
This expression separates the stress into a scalar part on the left which may be associated with a scalar pressure, and a traceless part on the right which may be associated with shear forces. A simpler expression is:<ref>{{Cite book |
<math display="block"> \sigma_{ij} = \lambda \delta_{ij} \varepsilon_{kk}+2\mu\varepsilon_{ij}</math>
where λ is [[Lamé's first parameter]]. Since the constitutive equation is simply a set of linear equations, the strain may be expressed as a function of the stresses as:<ref>{{cite book |title= Mechanics of Deformable Bodies |last=Sommerfeld|first=Arnold |author-link=Arnold Sommerfeld|year=1964 |publisher=Academic Press |___location=New York}}</ref>
Line 190:
===== Thomson's solution - point force in an infinite isotropic medium =====
<math display="block">a = 1-2\nu</math>
<math display="block">b = 2(1-\nu) = a+1</math>
Line 226:
It can be seen that there is a component of the displacement in the direction of the force, which diminishes, as is the case for the potential in electrostatics, as 1/''r'' for large ''r''. There is also an additional ρ-directed component.
======Frequency ___domain Green's function======
Rewrite the Navier-Cauchy equations in component form<ref>{{cite web |last=Bouchbinder |first=Eran |title= Linear Elasticity I (Non‑Equilibrium Continuum Physics)|url=https://www.weizmann.ac.il/chembiophys/bouchbinder/sites/chemphys.bouchbinder/files/uploads/Courses/2021/TAs/TA4-Linear_elasticity-I.pdf |website=Weizmann Institute of Science |publisher=Department of Chemical and Biological Physics |date=5 May 2021 |access-date=20 May 2025}}</ref>
<math display="block">(\lambda + \mu)\partial_i \partial_j u_j +\mu\partial_j\partial_j u_i =-F_i</math>
Convert this to frequency ___domain, where derivative <math> \partial_i</math> maps to <math>\sqrt{-1}q_i</math>, where <math>q</math> is the wave vector
<math display="block">(\lambda + \mu)q_i q_j u_j +\mu|q|^2u_i =F_i</math>
Spatial frequency ___domain force to displacement Green's function is the inverse of the above
<math>G_{ij}(q) = \frac{1}{\mu}\bigg[\frac{\delta_{ij}}{|q|^2} -\frac{1}{b}\frac{q_iq_j}{|q|^4}\bigg]</math>
The stress to strain Green's function <math>\Gamma</math> is<ref>{{cite journal | last1=Moulinec | first1=H. | last2=Suquet | first2=P. | title=A fast numerical method for computing the linear and nonlinear mechanical properties of composites | journal=Comptes Rendus de l'Académie des Sciences, Série II | volume=318 | pages=1417–1423 | year=1994 | url=https://lma-software-craft.cnrs.fr/wp-content/uploads/2020/11/CRAS_Moulinec_Suquet_1994.pdf | access-date=2025-05-17}}</ref>
<math>\Gamma_{khij} = \frac{1}{4\mu |q|^2}(\delta_{ki}q_hq_j+\delta_{hi}q_kq_j+\delta_{kj}q_hq_i+\delta_{hj}q_kq_i) -\frac{\lambda+\mu}{\mu(\lambda+2\mu)}\frac{q_iq_jq_kq_h}{|q|^4}</math>
where <math>\epsilon_{kh} = \Gamma_{khij}\sigma_{ij}</math>
===== Boussinesq–Cerruti solution - point force at the origin of an infinite isotropic half-space =====
Another useful solution is that of a point force acting on the surface of an infinite half-space.<ref name="tribonet" /> It was derived by Boussinesq<ref>{{cite book |title=Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques |last=Boussinesq |first=Joseph |author-link=Joseph Boussinesq |year=1885 |publisher=Gauthier-Villars |___location=Paris, France |url=http://name.umdl.umich.edu/ABV5032.0001.001 |archive-date=2024-09-03 |access-date=2007-12-19 |archive-url=https://web.archive.org/web/20240903234441/https://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=ABV5032.0001.001 |url-status=live }}</ref> for the normal force and Cerruti for the tangential force and a derivation is given in Landau & Lifshitz.<ref name="LL" />{{rp|§8}} In this case, the solution is again written as a Green's tensor which goes to zero at infinity, and the component of the stress tensor normal to the surface vanishes. This solution may be written in Cartesian coordinates as [recall: <math>a=(1-2\nu)</math> and <math>b=2(1-\nu)</math>, <math>\nu</math> = Poisson's ratio]:
<math display="block">G_{ik} = \frac{1}{4\pi\mu r}
Line 247 ⟶ 265:
===== Other solutions =====
* Point force inside an infinite isotropic half-space.<ref>{{cite journal |last=Mindlin |first= R. D.|author-link=Raymond D. Mindlin |year=1936|title=Force at a point in the interior of a semi-infinite solid |journal=Physics |volume=7| issue= 5| pages=195–202 |url= http://www.dtic.mil/get-tr-doc/pdf?AD=AD0012375|archive-url= https://web.archive.org/web/20170923074956/http://www.dtic.mil/get-tr-doc/pdf?AD=AD0012375|url-status= dead|archive-date= September 23, 2017|doi=10.1063/1.1745385 |bibcode = 1936Physi...7..195M|url-access=subscription}}</ref>
* Contact of two elastic bodies: the Hertz solution (see [http://www.tribonet.org/cmdownloads/hertz-contact-calculator/ Matlab code]).<ref>{{cite journal |last=Hertz |first= Heinrich|author-link=Heinrich Hertz |year=1882 |title=Contact between solid elastic bodies |journal=Journal für die reine und angewandte Mathematik|volume=92}}</ref> See also the page on [[Contact mechanics]].
|