Content deleted Content added
Citation bot (talk | contribs) Alter: bibcode. Add: s2cid, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. Upgrade ISBN10 to ISBN13. | Use this bot. Report bugs. | Suggested by Abductive | Category:Articles with specifically marked weasel-worded phrases from October 2021 | #UCB_Category 19/403 |
LucasBrown (talk | contribs) Changing short description from "An algorithm for inverting a matrix" to "Algorithm for inverting a matrix" |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1:
{{Short description|Algorithm for inverting a matrix}}
{{Technical|date=August 2021}}
[[File:
The method has been extended to the '''Generalized Rybicki-Press algorithm''' for inverting matrices with entries of the form <math>A(i,j) = \sum_{k=1}^p a_k \exp(-\beta_k \vert t_i - t_j \vert)</math>.<ref name=":3">{{Cite journal|last=Ambikasaran|first=Sivaram|date=2015-12-01|title=Generalized Rybicki Press algorithm|journal=Numerical Linear Algebra with Applications|language=en|volume=22|issue=6|pages=1102–1114|doi=10.1002/nla.2003|issn=1099-1506|arxiv=1409.7852|s2cid=1627477}}</ref> The key observation in the Generalized Rybicki-Press (GRP) algorithm is that the matrix <math>A</math> is a [[semi-separable matrix]] with rank <math>p</math> (that is, a matrix whose upper half, not including the main diagonal, is that of some matrix with [[matrix rank]] <math>p</math> and whose lower half is also that of some possibly different rank <math>p</math> matrix<ref name=":3" />) and so can be embedded into a larger [[band matrix]] (see figure on the right), whose sparsity structure can be leveraged to reduce the computational complexity. As the matrix <math>A \in \mathbb{R}^{n\times n}</math> has a semi-separable rank of <math>p</math>, the [[computational complexity]] of solving the linear system <math>Ax=b</math> or of calculating the determinant of the matrix <math>A</math> scales as <math>\mathcal{O}\left(p^2n \right)</math>, thereby making it attractive for large matrices.<ref name=":3" />
The fact that matrix <math>A</math> is a semi-separable matrix also forms the basis for {{proper name|celerite}}<ref>{{Cite web|url=https://celerite.readthedocs.io/en/stable/|title=celerite — celerite 0.3.0 documentation|website=celerite.readthedocs.io|language=en|access-date=2018-04-05}}</ref> library, which is a library for fast and scalable [[Gaussian process regression]] in one dimension<ref name=":1">{{Cite journal|last1=Foreman-Mackey|first1=Daniel|last2=Agol|first2=Eric|last3=Ambikasaran|first3=Sivaram|last4=Angus|first4=Ruth|date=2017|title=Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series|url=http://stacks.iop.org/1538-3881/154/i=6/a=220|journal=The Astronomical Journal|language=en|volume=154|issue=6|pages=220|doi=10.3847/1538-3881/aa9332|issn=1538-3881|arxiv=1703.09710|bibcode=2017AJ....154..220F|s2cid=88521913 |doi-access=free }}</ref> with implementations in [[C++]], [[Python (programming language)|Python]], and [[Julia (programming language)|Julia]]. The {{proper name|celerite}} method<ref name=":1" /> also provides an algorithm for generating samples from a high-dimensional distribution. The method has found attractive applications in a wide range of fields,{{Which|date=October 2021}} especially in astronomical data analysis.<ref>{{Cite journal|last=Foreman-Mackey|first=Daniel|date=2018|title=Scalable Backpropagation for Gaussian Processes using Celerite|url=http://stacks.iop.org/2515-5172/2/i=1/a=31|journal=Research Notes of the AAS|language=en|volume=2|issue=1|pages=31|doi=10.3847/2515-5172/aaaf6c|issn=2515-5172|arxiv=1801.10156|bibcode=2018RNAAS...2...31F|s2cid=102481482 |doi-access=free }}</ref><ref>{{Cite book|title=Handbook of Exoplanets|last=Parviainen|first=Hannu|date=2018|publisher=Springer, Cham|isbn=9783319306483|pages=1–24|language=en|doi=10.1007/978-3-319-30648-3_149-1|chapter = Bayesian Methods for Exoplanet Science|arxiv = 1711.03329}}</ref>
==See also==
* [[Invertible matrix]]
* [[Matrix decomposition]]
* [[Multidimensional signal processing]]
* [[System of linear equations]]
==References==
|