Explicit formulae for L-functions: Difference between revisions

Content deleted Content added
rmv non-WP:RS : copy of a Wikipedia mirror
 
(11 intermediate revisions by 4 users not shown)
Line 1:
{{Short description|Mathematical concept}}
In [[mathematics]], the '''[[Closed-form expression|explicit formulae]] for [[L-function]]s''' are relations between sums over the [[complex number]] zeroes of an [[L-function]] and sums over [[Prime number|prime powers]], introduced by {{harvtxt|Riemann|1859}} for the [[Riemann zeta function]]. Such explicit formulae have been applied also to questions on bounding the [[discriminant of an algebraic number field]], and the [[conductor of a number field]].
 
==Riemann's explicit formula==
In his 1859 paper "[[On the Number of Primes Less Than a Given Magnitude]]" Riemann sketched an explicit formula (it was not fully proven until 1895 by [[Hans Carl Friedrich von Mangoldt|von Mangoldt]], see below) for the normalized prime-counting function {{math|&pi;<sub>0</sub>(''x'')}} which is related to the [[prime-counting function]] {{math|&pi;(''x'')}} by{{cn|date=February 2024}}
:<math>\pi_0(x) = \frac{1}{2} \lim_{h\to 0} \left[\,\pi(x+h) + \pi(x-h)\,\right]\,,</math>
which takes the [[arithmetic mean]] of the limit from the left and the limit from the right at discontinuities.{{efn|The original prime counting function can easily be recovered via <math>~\pi(x) = \pi_0(x+1)~</math> for all <math>~x \ge 3~.</math>}} His formula was given in terms of the related function
Line 17 ⟶ 18:
The first rigorous proof of the aforementioned formula was given by von Mangoldt in 1895: it started with a proof of the following formula for the [[Chebyshev's function]] {{mvar|ψ}}&nbsp;<ref>Weisstein, Eric W. [http://mathworld.wolfram.com/ExplicitFormula.html Explicit Formula] on MathWorld.</ref>
:<math>\psi_0(x) = \dfrac{1}{2\pi i} \int_{\sigma-i \infty}^{\sigma+i \infty}\left(-\dfrac{\zeta'(s)}{\zeta(s)}\right)\dfrac{x^s}{s}\, ds = x - \sum_\rho\frac{~x^\rho\,}{\rho} - \log(2\pi) -\dfrac{1}{2}\log(1-x^{-2})</math>
where the LHS is an inverse [[Mellin transform]] with
:<math>\sigma > 1\,, \quad \psi(x) = \sum_{p^k \le x} \log p\,,
\quad \text{and} \quad \psi_0(x) = \frac{1}{2} \lim_{h\to 0} (\psi(x+h) + \psi(x-h))</math>
Line 46 ⟶ 47:
*<math>\Psi(t) = - \log( \pi ) + \operatorname{Re}(\psi(1/4 + it/2))</math>, where <math>\psi</math> is the [[digamma function]] {{math|Γ<big>&prime;</big>/Γ}}.
 
Roughly speaking, the explicit formula says the Fourier transform of the zeros of the zeta function is the set of prime powers plus some elementary factors. Once this is said, the formula comes from the fact that the Fourier transform is a [[unitary operator]], so that a scalar product in time ___domain is equal to the scalar product of the Fourier transforms in the frequency ___domain.
 
The terms in the formula arise in the following way.
Line 74 ⟶ 75:
Also for the Liouville function we have
 
: <math> \sum_{n=1}^\infty \frac{\lambda(n)}{\sqrt{n}}g(\log n) = \sum_{\rho}\frac{h( \gamma)\zeta(2 \rho )}{\zeta'( \rho)} + \frac{1}{2\zeta (1/2)}\int_{-\infty}^\infty dx \, g(x) .</math>
 
For the Euler-Phi function the explicit formula reads
 
: <math> \sum_{n=1}^{\infty} \frac{\varphi (n)}{\sqrt{n}}g(\log n) = \frac{6}{\pi ^2} \int_{-\infty}^\infty dx \, g(x) e^{3x/2} + \sum_\rho \frac{h( \gamma)\zeta(\rho -1 )}{\zeta '( \rho)} + \frac{1}{2}\sum_{n=1}^\infty \frac{\zeta (-2n-1)}{\zeta'(-2n)} \int_{-\infty}^\infty dx \, g(x)e^{-x(2n+1/2)} .</math>
 
Assuming Riemann zeta function has only simple zeros.
In all cases the sum is related to the imaginary part of the Riemann zeros <math display="inline"> \rho = \frac{1}{2}+i \gamma </math> and the function ''h'' is related to the test function ''g'' by a Fourier transform, <math display="inline"> g(u) = \frac{1}{2\pi} \int_{-\infty}^\infty h(x) \exp(-iux) </math>.
 
Line 101 ⟶ 103:
:<math> \sum_\rho F(\rho) = \operatorname{Tr}(F(\widehat T )).\!</math>
 
Development of the explicit formulae for a wide class of L-functions was given by {{harvtxt|Weil|1952}}, who first extended the idea to [[local zeta-function]]s, and formulated a version of a [[generalized Riemann hypothesis]] in this setting, as a positivity statement for a [[generalized function]] on a [[topological group]]. More recent work by [[Alain Connes]] has gone much further into the functional-analytic background, providing a trace formula the validity of which is equivalent to such a generalized Riemann hypothesis. A slightly different point of view was given by {{harvtxt|Meyer|2005}}, who derived the explicit formula of Weil via [[harmonic analysis]] on [[Adele ring|adelic]] spaces.
 
==See also==
Line 119 ⟶ 121:
*{{Citation | last1 = Meyer | first1 = Ralf | title=On a representation of the idele class group related to primes and zeros of ''L''-functions | journal = [[Duke Math. J.]] | volume=127 | number=3 | year=2005 | pages=519–595 | zbl=1079.11044 | issn=0012-7094 | doi=10.1215/s0012-7094-04-12734-4 | mr=2132868 | arxiv=math/0311468 | s2cid = 119176169 }}
*{{citation | last = Zagier | first = Don |author-link= Don Zagier | doi = 10.1007/bf03351556 | issue = S2 | journal = [[The Mathematical Intelligencer]] | pages = 7–19 | title = The first 50 million prime numbers | volume = 1 | year = 1977| s2cid = 37866599 }}
* https://www.gsjournal.net/Science-Journals/Research%20Papers/View/9990 Moreta, Jose Javier Garcia:"On the evaluation of certain arithmetical functions of number theory and their sums and a generalization of riemann-weil formula"
 
==Further reading==