Content deleted Content added
→Background: Rephrased to avoid redlink |
Citation bot (talk | contribs) Altered doi-broken-date. | Use this bot. Report bugs. | #UCB_CommandLine |
||
(15 intermediate revisions by 9 users not shown) | |||
Line 1:
{{Short description|Algorithm for solving matrix-vector equations}}
In [[numerical linear algebra]], the '''conjugate gradient squared method (CGS)''' is an [[iterative method|iterative]] algorithm for solving [[systems of linear equations]] of the form <math>A{\bold x} = {\bold b}</math>, particularly in cases where computing the [[transpose]] <math>A^T</math> is impractical.<ref name="mathworld">{{cite web|title=Conjugate Gradient Squared Method|author1=Noel Black|author2=Shirley Moore|publisher=[[MathWorld|Wolfram Mathworld]]|url=https://mathworld.wolfram.com/ConjugateGradientSquaredMethod.html}}</ref> The CGS method was developed as an improvement to the [[
== Background ==
A [[system of linear equations]] <math>A{\bold x} = {\bold b}</math> consists of a known [[Matrix (mathematics)|matrix]] <math>A</math> and a known [[Vector (mathematics)|vector]] <math>{\bold b}</math>. To solve the system is to find the value of the unknown vector <math>{\bold x}</math>.<ref name="vorst03" /><ref>{{Citation |title=Matrix Analysis and Applied Linear Algebra |pages=1–40 |access-date=2023-12-18 |archive-url=https://web.archive.org/web/20040610221137/http://www.matrixanalysis.com/Chapter1.pdf |
As with the [[conjugate gradient method]], [[biconjugate gradient method]], and similar iterative methods for solving systems of linear equations, the CGS method can be used to find solutions to multi-variable [[optimisation problems]], such as [[power-flow study|power-flow analysis]], [[hyperparameter optimisation]], and [[facial recognition system|facial recognition]].<ref>{{cite web|title=Conjugate gradient methods|author1=Alexandra Roberts|author2=Anye Shi|author3=Yue Sun|access-date=2023-12-26|publisher=[[Cornell University]]|url=https://optimization.cbe.cornell.edu/index.php?title=Conjugate_gradient_methods}}</ref>
==
The algorithm is as follows:<ref>{{cite book|author1=R. Barrett|author2=M. Berry|author3=T. F. Chan|author4=J. Demmel|author5=J. Donato|author6=J. Dongarra|author7=V. Eijkhout|author8=R. Pozo|author9=C. Romine|author10=H. Van der Vorst|title=Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition|publisher=SIAM|year=1994|url=https://netlib.org/linalg/html_templates/Templates.html}}</ref>
Line 42 ⟶ 34:
## Check for convergence: if there is convergence, end the loop and return the result
== See
* [[Biconjugate gradient method]]
* [[Biconjugate gradient stabilized method]]
Line 48 ⟶ 40:
== References ==
{{Reflist}}
[[:Category:Numerical linear algebra]]▼
[[:Category:Gradient methods]]▼
|