Content deleted Content added
Citation bot (talk | contribs) Altered doi-broken-date. | Use this bot. Report bugs. | #UCB_CommandLine |
|||
(48 intermediate revisions by 27 users not shown) | |||
Line 1:
{{short description|Use of complex numbers to evaluate integrals}}
In [[integral calculus]], [[complex number]]s and [[Euler's formula]] may be used to evaluate [[integral]]s involving [[trigonometric functions]]. Using Euler's formula, any trigonometric function may be written in terms of ''e''<sup>''ix''</sup> and ''e''<sup>−''ix''</sup>, and then integrated. This technique is often simpler and faster than using [[trigonometric identities]] or [[integration by parts]], and is sufficiently powerful to integrate any [[rational expression]] involving trigonometric functions.▼
{{more citations needed|date=July 2019}}
{{calculus|expanded=integral}}
▲In [[integral calculus]], [[
==Euler's formula==
Euler's formula states that<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Euler Formula|url=https://mathworld.wolfram.com/EulerFormula.html|access-date=2021-03-17|website=mathworld.wolfram.com|language=en}}</ref>
:<math>e^{ix} = \cos x + i\,\sin x.</math>
Substituting
:<math>e^{-ix} = \cos x - i\,\sin x
because cosine is an even function and sine is odd. These two equations can be solved for the sine and cosine
:<math>\cos x = \frac{e^{ix} + e^{-ix}}{2}\quad\text{and}\quad\sin x = \frac{e^{ix}-e^{-ix}}{2i}.</math>
==
=== First example ===
Consider the integral
:<math>\int \cos^2 x \, dx .</math>
The standard approach to this integral is to use a [[half-angle formula]] to simplify the integrand.
:<math>\begin{align}
\int \cos^2 x \, dx \,&=\, \int \left(\frac{e^{ix}+e^{-ix}}{2}\right)^2 dx \\[6pt]
&=\, \
\end{align}</math>
At this point, it would be possible to change back to real numbers using the formula {{math|''e''<sup>2''ix''</sup>
:<math>\begin{align}
\
&=
\end{align}</math>
===Second example===
Consider the integral
:<math>\int \sin^2 x \cos 4x \, dx.</math>
This integral would be extremely tedious to solve using trigonometric identities, but using Euler's identity makes it relatively painless:
:<math>\begin{align}
\int \sin^2 x \cos 4x \, dx
&=
&=
&=
\end{align}</math>
At this point we can either integrate directly, or we can first change the integrand to {{math|2 cos
Either method gives
:<math>\int \sin^2 x \cos 4x \, dx
==Using real parts==
In addition to Euler's identity, it can be helpful to make judicious use of the [[real part]]s of complex expressions.
:<math>\int e^x \cos x \, dx.</math>
Since {{math|cos
:<math>\int e^x \cos x \, dx
The integral on the right is easy to evaluate:
:<math>\int e^x e^{ix} \, dx
Thus:
:<math>\begin{align}
\int e^x \cos x \, dx
&=
&=
&=
\end{align}</math>
==Fractions==
In general, this technique may be used to evaluate any fractions involving trigonometric functions.
:<math>\int \frac{1+\cos^2 x}{\cos x + \cos 3x} \, dx.</math>
Using Euler's identity, this integral becomes
:<math>\
If we now make the [[integration by substitution|substitution]]
:<math>-\frac{i}{2}\int \frac{1+6u^2 + u^4}{1 + u^2 + u^4 + u^6}\,du.</math>
One may proceed using [[partial fraction decomposition]].
==See also==
{{Portal|Mathematics}}
* [[Trigonometric substitution]]
* [[Weierstrass substitution]]
* [[Euler substitution]]
==References==
{{Reflist}}
{{Integrals}}
[[Category:Integral calculus]]
[[Category:Theorems in mathematical analysis]]
[[Category:Theorems in calculus]]
|