Content deleted Content added
No edit summary |
Citation bot (talk | contribs) Altered doi-broken-date. | Use this bot. Report bugs. | #UCB_CommandLine |
||
(42 intermediate revisions by 23 users not shown) | |||
Line 1:
{{short description|Use of complex numbers to evaluate integrals}}
{{more citations needed|date=July 2019}}
In [[integral calculus]], [[complex number]]s and [[Euler's formula]] may be used to evaluate [[integral]]s involving [[trigonometric functions]]. Using Euler's formula, any trigonometric function may be written in terms of {{math|''e''<sup>''ix''</sup>}} and {{math|''e''<sup>−''ix''</sup>}}, and then integrated. This technique is often simpler and faster than using [[trigonometric identities]] or [[integration by parts]], and is sufficiently powerful to integrate any [[rational expression]] involving trigonometric functions.▼
{{calculus|expanded=integral}}
▲In [[integral calculus]], [[
==Euler's formula==
Euler's formula states that<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Euler Formula|url=https://mathworld.wolfram.com/EulerFormula.html|access-date=2021-03-17|website=mathworld.wolfram.com|language=en}}</ref>
:<math>e^{ix} = \cos x + i\,\sin x.</math>
Substituting
:<math>e^{-ix} = \cos x - i\,\sin x
because cosine is an even function and sine is odd. These two equations can be solved for the sine and cosine
:<math>\cos x = \frac{e^{ix} + e^{-ix}}{2}\quad\text{and}\quad\sin x = \frac{e^{ix}-e^{-ix}}{2i}.</math>
==
=== First example ===
Consider the integral
:<math>\int \cos^2 x \, dx .</math>
The standard approach to this integral is to use a [[half-angle formula]] to simplify the integrand. We
:<math>\begin{align}
\int \cos^2 x \, dx \,&=\, \int \left(\frac{e^{ix}+e^{-ix}}{2}\right)^2 dx \\[6pt]
&=\, \frac14\int \left( e^{2ix} + 2 +
\end{align}</math>
At this point, it would be possible to change back to real numbers using the formula {{math|''e''<sup>2''ix''</sup> + ''e''<sup>−2''ix''</sup> {{=}} 2 cos 2''x''}}. Alternatively, we can integrate the complex exponentials and not change back to trigonometric functions until the end:
Line 25 ⟶ 30:
\end{align}</math>
===Second example===
Consider the integral
:<math>\int \sin^2 x \cos 4x \, dx.</math>
Line 35 ⟶ 40:
&= -\frac18\int \left(e^{6ix} - 2e^{4ix} + e^{2ix} + e^{-2ix} - 2e^{-4ix} + e^{-6ix}\right) dx.
\end{align}</math>
At this point we can either integrate directly, or we can first change the integrand to {{math|2 cos 6''x'' −
Either method gives
:<math>\int \sin^2 x \cos 4x \, dx = -\frac{1}{24} \sin 6x + \frac18\sin 4x - \frac18 \sin 2x + C.</math>
Line 59 ⟶ 64:
Using Euler's identity, this integral becomes
:<math>\frac12 \int \frac{6 + e^{2ix} + e^{-2ix} }{e^{ix} + e^{-ix} + e^{3ix} + e^{-3ix}} \, dx.</math>
If we now make the [[integration by substitution|substitution]]
:<math>-\frac{i}{2}\int \frac{1+6u^2 + u^4}{1 + u^2 + u^4 + u^6}\,du.</math>
One may proceed using [[partial fraction decomposition]].
==See also==
{{Portal|Mathematics}}
* [[Trigonometric substitution]]
* [[Weierstrass substitution]]
* [[Euler substitution]]
==References==
{{Reflist}}
{{Integrals}}
[[Category:Integral calculus]]
[[Category:Theorems in mathematical analysis]]
[[Category:Theorems in calculus]]
|