Integration using Euler's formula: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Altered doi-broken-date. | Use this bot. Report bugs. | #UCB_CommandLine
 
(30 intermediate revisions by 16 users not shown)
Line 1:
{{short description|Use of complex numbers to evaluate integrals}}
{{unreferenced|date=October 2016}}
{{more citations needed|date=July 2019}}
In [[integral calculus]], [[complex number]]s and [[Euler's formula]] may be used to evaluate [[integral]]s involving [[trigonometric functions]]. Using Euler's formula, any trigonometric function may be written in terms of {{math|''e''<sup>''ix''</sup>}} and {{math|''e''<sup>−''ix''</sup>}}, and then integrated. This technique is often simpler and faster than using [[trigonometric identities]] or [[integration by parts]], and is sufficiently powerful to integrate any [[rational fraction|rational expression]] involving trigonometric functions.
{{calculus|expanded=integral}}
In [[integral calculus]], [[complexEuler's numberformula]]s andfor [[Euler'scomplex formulanumber]]s may be used to evaluate [[integral]]s involving [[trigonometric functions]]. Using Euler's formula, any trigonometric function may be written in terms of {{complex exponential functions, namely <math|''>e''<sup>''^{ix''}</supmath>}} and {{<math|''>e''<sup>−''^{-ix''}</supmath>}}, and then integrated. This technique is often simpler and faster than using [[trigonometric identities]] or [[integration by parts]], and is sufficiently powerful to integrate any [[rational fraction|rational expression]] involving trigonometric functions.<ref>{{Cite journal|last=Kilburn|first=Korey|title=Applying Euler's Formula to Integrate|journal=American Review of Mathematics and Statistics|date=2019 |publisher=American Research Institute for Policy Development|volume=7|pages=1–2|doi=10.15640/arms.v7n2a1|doi-broken-date=12 July 2025 |issn=2374-2348|eissn=2374-2356|doi-access=free|url=https://arms.thebrpi.org/vol-7-no-2-december-2019-abstract-1-arms |hdl=2158/1183208|hdl-access=free}}</ref>
 
==Euler's formula==
Euler's formula states that <ref>Weisstein,{{Cite web|last=Weisstein|first=Eric W.(June|title=Euler 14 2017)[httpFormula|url=https://mathworld.wolfram.com/EulerFormula.html]|access-date=2021-03-17|website=mathworld.wolfram.com|language=en}}</ref>
:<math>e^{ix} = \cos x + i\,\sin x.</math>
Substituting {{<math|−''>-x''}}</math> for {{<math|''>x''}}</math> gives the equation
:<math>e^{-ix} = \cos x - i\,\sin x.</math>
 
because cosine is an even function and sine is odd. These two equations can be solved for the sine and cosine: to give
:<math>\cos x = \frac{e^{ix} + e^{-ix}}{2}\quad\text{and}\quad\sin x = \frac{e^{ix}-e^{-ix}}{2i}.</math>
 
==Simple exampleExamples==
 
=== First example ===
Consider the integral
:<math>\int \cos^2 x \, dx .</math>
The standard approach to this integral is to use a [[half-angle formula]] to simplify the integrand. We can use Euler's identity instead:
:<math>\begin{align}
Line 25 ⟶ 30:
\end{align}</math>
 
===Second example===
Consider the integral
:<math>\int \sin^2 x \cos 4x \, dx.</math>
Line 35 ⟶ 40:
&= -\frac18\int \left(e^{6ix} - 2e^{4ix} + e^{2ix} + e^{-2ix} - 2e^{-4ix} + e^{-6ix}\right) dx.
\end{align}</math>
At this point we can either integrate directly, or we can first change the integrand to {{math|2 cos 6''x'' − 24 cos 4''x'' + 2 cos 2''x''}} and continue from there.
Either method gives
:<math>\int \sin^2 x \cos 4x \, dx = -\frac{1}{24} \sin 6x + \frac18\sin 4x - \frac18 \sin 2x + C.</math>
Line 59 ⟶ 64:
Using Euler's identity, this integral becomes
:<math>\frac12 \int \frac{6 + e^{2ix} + e^{-2ix} }{e^{ix} + e^{-ix} + e^{3ix} + e^{-3ix}} \, dx.</math>
If we now make the [[integration by substitution|substitution]] {{<math|''>u'' {{=}} ''e''<sup>''^{ix''}</supmath>}}, the result is the integral of a [[rational function]]:
:<math>-\frac{i}{2}\int \frac{1+6u^2 + u^4}{1 + u^2 + u^4 + u^6}\,du.</math>
One may proceed using [[partial fraction decomposition]].
Any [[rational function]] is integrable (using, for example, [[partial fractions in integration|partial fractions]]), and therefore any fraction involving trigonometric functions may be integrated as well.
 
==See also==
{{Portal|Mathematics}}
* [[Trigonometric substitution]]
* [[Weierstrass substitution]]
* [[Euler substitution]]
 
==References==
{{Reflist}}
{{Integrals}}
 
[[Category:Integral calculus]]
[[Category:Theorems in mathematical analysis]]
[[Category:Theorems in calculus]]