Content deleted Content added
Short description. |
Citation bot (talk | contribs) Altered doi-broken-date. | Use this bot. Report bugs. | #UCB_CommandLine |
||
(22 intermediate revisions by 13 users not shown) | |||
Line 1:
{{refimprove|date=July 2019}}▼
{{calculus|expanded=integral}}▼
{{short description|Use of complex numbers to evaluate integrals}}
In [[integral calculus]], [[Euler's formula]] for [[complex number]]s may be used to evaluate [[integral]]s involving [[trigonometric functions]]. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely <math>e^{ix}</math> and <math>e^{-ix}</math> and then integrated. This technique is often simpler and faster than using [[trigonometric identities]] or [[integration by parts]], and is sufficiently powerful to integrate any [[rational fraction|rational expression]] involving trigonometric functions.▼
▲{{calculus|expanded=integral}}
▲In [[integral calculus]], [[Euler's formula]] for [[complex number]]s may be used to evaluate [[integral]]s involving [[trigonometric functions]]. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely <math>e^{ix}</math> and <math>e^{-ix}</math> and then integrated. This technique is often simpler and faster than using [[trigonometric identities]] or [[integration by parts]], and is sufficiently powerful to integrate any [[rational fraction|rational expression]] involving trigonometric functions.<ref>{{Cite journal|last=Kilburn|first=Korey|title=Applying Euler's Formula to Integrate|journal=American Review of Mathematics and Statistics|date=2019 |publisher=American Research Institute for Policy Development|volume=7|pages=1–2|doi=10.15640/arms.v7n2a1|doi-broken-date=12 July 2025 |issn=2374-2348|eissn=2374-2356|doi-access=free|url=https://arms.thebrpi.org/vol-7-no-2-december-2019-abstract-1-arms |hdl=2158/1183208|hdl-access=free}}</ref>
==Euler's formula==
Euler's formula states that
:<math>e^{ix} = \cos x + i\,\sin x.</math>
Substituting <math>-x</math> for <math>x</math> gives the equation
:<math>e^{-ix} = \cos x - i\,\sin x
because cosine is an even function and sine is odd. These two equations can be solved for the sine and cosine
:<math>\cos x = \frac{e^{ix} + e^{-ix}}{2}\quad\text{and}\quad\sin x = \frac{e^{ix}-e^{-ix}}{2i}.</math>
==
=== First example ===
Consider the integral
:<math>\int \cos^2 x \, dx .</math>
The standard approach to this integral is to use a [[half-angle formula]] to simplify the integrand. We can use Euler's identity instead:
:<math>\begin{align}
Line 27 ⟶ 30:
\end{align}</math>
===Second example===
Consider the integral
:<math>\int \sin^2 x \cos 4x \, dx.</math>
Line 60 ⟶ 63:
:<math>\int \frac{1+\cos^2 x}{\cos x + \cos 3x} \, dx.</math>
Using Euler's identity, this integral becomes
:<math>\frac12 \int \frac{
If we now make the [[integration by substitution|substitution]]
:<math>-\frac{i}{2}\int \frac{1+
One may proceed using [[partial fraction decomposition]].
==See also==
{{Portal|Mathematics}}
* [[Trigonometric substitution]]
* [[Weierstrass substitution]]
* [[Euler substitution]]
==References==
{{Reflist}}
{{Integrals}}
[[Category:Integral calculus]]
[[Category:Theorems in mathematical analysis]]
[[Category:Theorems in calculus]]
|