Integration using Euler's formula: Difference between revisions

Content deleted Content added
Short description.
Citation bot (talk | contribs)
Altered doi-broken-date. | Use this bot. Report bugs. | #UCB_CommandLine
 
(22 intermediate revisions by 13 users not shown)
Line 1:
{{refimprove|date=July 2019}}
{{calculus|expanded=integral}}
{{short description|Use of complex numbers to evaluate integrals}}
{{refimprovemore citations needed|date=July 2019}}
In [[integral calculus]], [[Euler's formula]] for [[complex number]]s may be used to evaluate [[integral]]s involving [[trigonometric functions]]. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely <math>e^{ix}</math> and <math>e^{-ix}</math> and then integrated. This technique is often simpler and faster than using [[trigonometric identities]] or [[integration by parts]], and is sufficiently powerful to integrate any [[rational fraction|rational expression]] involving trigonometric functions.
{{calculus|expanded=integral}}
In [[integral calculus]], [[Euler's formula]] for [[complex number]]s may be used to evaluate [[integral]]s involving [[trigonometric functions]]. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely <math>e^{ix}</math> and <math>e^{-ix}</math> and then integrated. This technique is often simpler and faster than using [[trigonometric identities]] or [[integration by parts]], and is sufficiently powerful to integrate any [[rational fraction|rational expression]] involving trigonometric functions.<ref>{{Cite journal|last=Kilburn|first=Korey|title=Applying Euler's Formula to Integrate|journal=American Review of Mathematics and Statistics|date=2019 |publisher=American Research Institute for Policy Development|volume=7|pages=1–2|doi=10.15640/arms.v7n2a1|doi-broken-date=12 July 2025 |issn=2374-2348|eissn=2374-2356|doi-access=free|url=https://arms.thebrpi.org/vol-7-no-2-december-2019-abstract-1-arms |hdl=2158/1183208|hdl-access=free}}</ref>
 
==Euler's formula==
Euler's formula states that <ref>[http{{Cite web|last=Weisstein|first=Eric W.|title=Euler Formula|url=https://mathworld.wolfram.com/EulerFormula.html Weisstein, Eric W|access-date=2021-03-17|website=mathworld.(June 14 2017)]wolfram.com|language=en}}</ref>
:<math>e^{ix} = \cos x + i\,\sin x.</math>
Substituting <math>-x</math> for <math>x</math> gives the equation
:<math>e^{-ix} = \cos x - i\,\sin x.</math>
 
because cosine is an even function and sine is odd. These two equations can be solved for the sine and cosine: to give
:<math>\cos x = \frac{e^{ix} + e^{-ix}}{2}\quad\text{and}\quad\sin x = \frac{e^{ix}-e^{-ix}}{2i}.</math>
 
==Simple exampleExamples==
 
=== First example ===
Consider the integral
:<math>\int \cos^2 x \, dx .</math>
The standard approach to this integral is to use a [[half-angle formula]] to simplify the integrand. We can use Euler's identity instead:
:<math>\begin{align}
Line 27 ⟶ 30:
\end{align}</math>
 
===Second example===
Consider the integral
:<math>\int \sin^2 x \cos 4x \, dx.</math>
Line 60 ⟶ 63:
:<math>\int \frac{1+\cos^2 x}{\cos x + \cos 3x} \, dx.</math>
Using Euler's identity, this integral becomes
:<math>\frac12 \int \frac{126 + e^{2ix} + e^{-2ix} }{e^{ix} + e^{-ix} + e^{3ix} + e^{-3ix}} \, dx.</math>
If we now make the [[integration by substitution|substitution]] {{<math|''>u'' {{=}} ''e''<sup>''^{ix''}</supmath>}}, the result is the integral of a [[rational function]]:
:<math>-\frac{i}{2}\int \frac{1+12u6u^2 + u^4}{1 + u^2 + u^4 + u^6}\,du.</math>
One may proceed using [[partial fraction decomposition]].
 
==See also==
{{Portal|Mathematics}}
* [[Trigonometric substitution]]
* [[Weierstrass substitution]]
* [[Euler substitution]]
 
==References==
{{Reflist}}
{{Integrals}}
 
[[Category:Integral calculus]]
[[Category:Theorems in mathematical analysis]]
[[Category:Theorems in calculus]]