Local regression: Difference between revisions

Content deleted Content added
Tags: Mobile edit Mobile app edit Android app edit App section source
Citation bot (talk | contribs)
Altered doi-broken-date. | Use this bot. Report bugs. | #UCB_CommandLine
 
(18 intermediate revisions by 7 users not shown)
Line 9:
LOESS and LOWESS thus build on [[classical statistics|"classical" methods]], such as linear and nonlinear [[least squares regression]]. They address situations in which the classical procedures do not perform well or cannot be effectively applied without undue labor. LOESS combines much of the simplicity of linear least squares regression with the flexibility of [[Non-linear regression|nonlinear regression]]. It does this by fitting simple models to localized subsets of the data to build up a function that describes the deterministic part of the variation in the data, point by point. In fact, one of the chief attractions of this method is that the data analyst is not required to specify a global function of any form to fit a model to the data, only to fit segments of the data.
 
The trade-off for these features is increased computation. Because it is so computationally intensive, LOESS would have been practically impossible to use in the era when least squares regression was being developed. Most other modern methods for process modelingmodelling are similar to LOESS in this respect. These methods have been consciously designed to use our current computational ability to the fullest possible advantage to achieve goals not easily achieved by traditional approaches.
 
A smooth curve through a set of data points obtained with this statistical technique is called a ''loess curve'', particularly when each smoothed value is given by a weighted quadratic least squares regression over the span of values of the ''y''-axis [[scattergram]] criterion variable. When each smoothed value is given by a weighted linear least squares regression over the span, this is known as a ''lowess curve.''; howeverHowever, some authorities treat ''lowess'' and loess as synonyms.<ref>Kristen Pavlik, US Environmental Protection Agency, ''[https://19january2021snapshot.epa.gov/sites/static/files/2016-07/documents/loess-lowess.pdf Loess (or Lowess)]'', ''Nutrient Steps'', July 2016.</ref><ref name="NIST"/>
 
==History==
 
Local regression and closely related procedures have a long and rich history, having been discovered and rediscovered in different fields on multiple occasions. An early work by [[Robert Henderson (mathematician)|Robert Henderson]]<ref>Henderson, R. Note on Graduation by Adjusted Average. Actuarial Society of America Transactions 17, 43--48. [https://archive.org/details/transactions17actuuoft archive.org]</ref> studying the problem of graduation (a term for smoothing used in Actuarial literature) introduced local regression using cubic polynomials, and showed how earlier graduation methods could be interpreted as local polynomial fitting. [[William S. Cleveland]] and [[Catherine Loader]] (1995);<ref>{{cite Q|Q132138257}}</ref> and [[Lori Murray]] and [[David Bellhouse (statistician)|David Bellhouse]] (2019)<ref>{{cite Q|Q127772934}}</ref> discuss more of the historical work on graduation.
 
Specifically, let <math>Y_j</math> denote an ungraduated sequence of observations. Following Henderson, suppose that only the terms from <math>Y_{-h}</math> to <math>Y_h</math> are to be taken into account when computing the graduated value of <math>Y_0</math>, and <math>W_j</math> is the weight to be assigned to <math>Y_j</math>. Henderson then uses a local polynomial approximation <math>a + b j + c j^2 + d j^3</math>, and sets up the following four equations for the coefficients:
The [[Savitzky-Golay filter]], introduced by [[Abraham Savitzky]] and [[Marcel J. E. Golay]] (1964)<ref>{{cite Q|Q56769732}}</ref> significantly expanded the method. Like the earlier graduation work, the focus was on data with an equally-spaced predictor variable, where (excluding boundary effects) local regression can be represented as a [[convolution]]. Savitzky and Golay published extensive sets of convolution coefficients for different orders of polynomial and smoothing window widths.
:<math>
\begin{align}
\sum_{j=-h}^h ( a + b j + c j^2 + d j^3) W_j &= \sum_{j=-h}^h W_j Y_j \\
\sum_{j=-h}^h ( aj + b j^2 + c j^3 + d j^4) W_j &= \sum_{j=-h}^h j W_j Y_j \\
\sum_{j=-h}^h ( aj^2 + b j^3 + c j^4 + d j^5) W_j &= \sum_{j=-h}^h j^2 W_j Y_j \\
\sum_{j=-h}^h ( aj^3 + b j^4 + c j^5 + d j^6) W_j &= \sum_{j=-h}^h j^3 W_j Y_j
\end{align}
</math>
Solving these equations for the polynomial coefficients yields the graduated value, <math>\hat Y_0 = a</math>.
 
Henderson went further. In preceding years, many 'summation formula' methods of graduation had been developed, which derived graduation rules based on summation formulae (convolution of the series of obeservations with a chosen set of weights). Two such rules are the 15-point and 21-point rules of [[John Spencer (Actuary)|Spencer]] (1904).<ref>{{citeQ|Q127775139}}</ref> These graduation rules were carefully designed to have a quadratic-reproducing property: If the ungraduated values exactly follow a quadratic formula, then the graduated values equal the ungraduated values. This is an important property: a simple moving average, by contrast, cannot adequately model peaks and troughs in the data. Henderson's insight was to show that ''any'' such graduation rule can be represented as a local cubic (or quadratic) fit for an appropriate choice of weights.
 
Further discussions of the historical work on graduation and local polynomial fitting can be found in [[Frederick Macaulay|Macaulay]] (1931),<ref name="mac1931">{{citeQ|Q134465853}}</ref> [[William S. Cleveland|Cleveland]] and [[Catherine Loader|Loader]] (1995);<ref name="slrpm">{{citeQ|Q132138257}}</ref> and [[Lori Murray|Murray]] and [[David Bellhouse (statistician)|Bellhouse]] (2019).<ref>{{cite Q|Q127772934}}</ref>
 
The [[Savitzky-Golay filter]], introduced by [[Abraham Savitzky]] and [[Marcel J. E. Golay]] (1964)<ref>{{cite Q|Q56769732}}</ref> significantly expanded the method. Like the earlier graduation work, thetheir focus was on data with an equally-spaced predictor variable, where (excluding boundary effects) local regression can be represented as a [[convolution]]. Savitzky and Golay published extensive sets of convolution coefficients for different orders of polynomial and smoothing window widths.
 
Local regression methods started to appear extensively in statistics literature in the 1970s; for example, [[Charles Joel Stone|Charles J. Stone]] (1977),<ref>{{cite Q|Q56533608}}</ref> [[Vladimir Katkovnik]] (1979)<ref>{{citation |first=Vladimir|last=Katkovnik|title=Linear and nonlinear methods of nonparametric regression analysis|journal=Soviet Automatic Control|date=1979|volume=12|issue=5|pages=25–34}}</ref> and [[William S. Cleveland]] (1979).<ref name="cleve79">{{cite Q|Q30052922}}</ref> Katkovnik (1985)<ref name="katbook">{{cite QciteQ|Q132129931}}</ref> is the earliest book devoted primarily to local regression methods.
 
Extensive theoreticalTheoretical work continued to appear throughout the 1990s. Important contributions include [[Jianqing Fan]] and [[Irène Gijbels]] (1992)<ref>{{cite Q|Q132202273}}</ref> studying efficiency properties, and [[David Ruppert]] and [[Matthew P. Wand]] (1994)<ref>{{cite Q|Q132202598}}</ref> developing an asymptotic distribution theory for multivariate local regression.
 
An important extension of local regression is Local Likelihood Estimation, formulated by [[Robert Tibshirani]] and [[Trevor Hastie]] (1987).<ref name="tib-hast-lle">{{cite Q|Q132187702}}</ref> This replaces the local least-squares criterion with a likelihood-based criterion, thereby extending the local regression method to the [[Generalized linear model]] setting; for example binary data;, count data; or censored data.
 
Practical implementations of local regression began appearing in statistical software in the 1980s. Cleveland (1981)<ref>{{cite Q|Q29541549}}</ref> introduces the LOWESS routines, intended for smoothing scatterplots. This implements local linear fitting with a single predictor variable, and also introduces robustness downweighting to make the procedure resistant to outliers. An entirely new implementation, LOESS, is described in Cleveland and [[Susan J. Devlin]] (1988).<ref name="clevedev">{{cite Q|Q29393395}}</ref> LOESS is a multivariate smoother, able to handle spatial data with two (or more) predictor variables, and uses (by default) local quadratic fitting. Both LOWESS and LOESS are implemented in the [[S (programming language)|S]] and [[R (programming language)|R]] programming languages. See also Cleveland's Local Fitting Software.<ref>{{cite web |last=Cleveland|first=William|title=Local Fitting Software|url=http://www.stat.purdue.edu/~wsc/localfitsoft.html|archive-url=https://web.archive.org/web/20050912090738/http://www.stat.purdue.edu/~wsc/localfitsoft.html |archive-date=12 September 2005 }}</ref>
Line 100 ⟶ 115:
One question not addressed above is, how should the bandwidth depend upon the fitting point <math>x</math>? Often a constant bandwidth is used, while LOWESS and LOESS prefer a nearest-neighbor bandwidth, meaning ''h'' is smaller in regions with many data points. Formally, the smoothing parameter, <math>\alpha</math>, is the fraction of the total number ''n'' of data points that are used in each local fit. The subset of data used in each weighted least squares fit thus comprises the <math>n\alpha</math> points (rounded to the next largest integer) whose explanatory variables' values are closest to the point at which the response is being estimated.<ref name="NIST">NIST, [http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd144.htm "LOESS (aka LOWESS)"], section 4.1.4.4, ''NIST/SEMATECH e-Handbook of Statistical Methods,'' (accessed 14 April 2017)</ref>
 
More sophisticated methods attempt to choose the bandwidth ''adaptively''; that is, choose a bandwidth at each fitting point <math>x</math> by applying criteria such as cross-validation locally within the smoothing window. An early example of this is [[Jerome H. Friedman]]'s<ref>{{citation|first=Jerome H.|last=Friedman|title=A Variable Span Smoother|date=October 1984|publisher=Technical report, Laboratory for Computational Statistics LCS 5; SLAC PUB-3466|doi=10.2171/1447470|doi-broken-date=201 MarchJuly 2025 |url=http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-3477.pdf}}</ref> "supersmoother", which uses cross-validation to choose among local linear fits at different bandwidths.
 
===Degree of local polynomials===
Line 131 ⟶ 146:
has been used in LOWESS and other local regression software; this combines higher-order differentiability with a high MSE efficiency.
 
One criticism of weight functions with bounded support is that they can lead to numerical problems (i.e. an unstable or singular design matrix) when fitting in regions with sparse data. For this reason, some authors{{who|date=April 2025}} choose to use the Gaussian kernel, or others with unbounded support.
 
===Choice of fitting criterion===
Line 137 ⟶ 152:
As described above, local regression uses a locally weighted least squares criterion to estimate the regression parameters. This inherits many of the advantages (ease of implementation and interpretation; good properties when errors are normally distributed) and disadvantages (sensitivity to extreme values and outliers; inefficiency when errors have unequal variance or are not normally distributed) usually associated with least squares regression.
 
These disadvantages can be addressed by replacing the local least-squares estimation by something else. Two such ideas are presented here: Locallocal likelihood estimation, which applies local estimation to the [[Generalizedgeneralized linear model]], and Robustrobust local regression, which localizes methods from [[robust regression]].
 
====Local Likelihoodlikelihood Estimationestimation====
 
In local likelihood estimation, developed in Tibshirani and Hastie (1987),<ref name="tib-hast-lle" /> the observations <math>Y_i</math> are assumed to come from a parametric family of distributions, with a known probability density function (or mass function, for discrete data),
Line 174 ⟶ 189:
</math>
 
An asymptotic theory for local likelihood estimation is developed in J. Fan, [[Nancy E. Heckman]] and M.P.Wand (1995);<ref>{{cite Q|Q132508409}}</ref> the book Loader (1999)<ref name="loabook">{{cite QciteQ|Q59410587}}</ref> discusses many more applications of local likelihood.
 
====Robust Locallocal Regressionregression====
 
To address the sensitivity to outliers, techniques from [[robust regression]] can be employed. In local [[M-estimator|M-estimation]], the local least-squares criterion is replaced by a criterion of the form
Line 184 ⟶ 199:
\right )
</math>
where <math>\rho(\cdot)</math> is a robustness function and <math>s</math> is a scale parameter. Discussion of the merits of different choices of robustness function is best left to the [[robust regression]] literature. The scale parameter <math>s</math> must also be estimated. References for local M-estimation include Katkovnik (1985)<ref name="katbook">{{cite QciteQ|Q132129931}}</ref> and [[Alexandre Tsybakov]] (1986).<ref>{{citation |first=Alexandre B.|last=Tsybakov|title=Robust reconstruction of functions by the local-approximation method.|journal=Problems of Information Transmission|volume=22|pages=133–146}}</ref>
 
The robustness iterations in LOWESS and LOESS correspond to the robustness function defined by
Line 209 ⟶ 224:
 
Finally, as discussed above, LOESS is a computationally intensive method (with the exception of evenly spaced data, where the regression can then be phrased as a non-causal [[finite impulse response]] filter). LOESS is also prone to the effects of outliers in the data set, like other least squares methods. There is an iterative, [[robust statistics|robust]] version of LOESS [Cleveland (1979)] that can be used to reduce LOESS' sensitivity to [[outliers]], but too many extreme outliers can still overcome even the robust method.
 
==Further reading==
 
Books substantially covering local regression and extensions:
* Macaulay (1931) "The Smoothing of Time Series",<ref name="mac1931">{{citeQ|Q134465853}}</ref> discusses graduation methods with several chapters related to local polynomial fitting.
* Katkovnik (1985) "Nonparametric Identification and Smoothing of Data"<ref name="katbook">{{citeQ|Q132129931}}</ref> in Russian.
* Fan and Gijbels (1996) "Local Polynomial Modelling and Its Applications".<ref>{{citeQ|Q134377589}}</ref>
* Loader (1999) "Local Regression and Likelihood".<ref name="loabook">{{citeQ|Q59410587}}</ref>
* Fotheringham, Brunsdon and Charlton (2002), "Geographically Weighted Regression"<ref name="gwrbook">{{citeQ|Q133002722}}</ref> (a development of local regression for spatial data).
 
Book chapters, Reviews:
* "Smoothing by Local Regression: Principles and Methods"<ref name="slrpm">{{citeQ|Q132138257}}</ref>
* "Local Regression and Likelihood", Chapter 13 of ''Observed Brain Dynamics'', Mitra and Bokil (2007)<ref>{{citeQ|Q57575432}}</ref>
* [[Rafael Irizarry (scientist)|Rafael Irizarry]], "Local Regression". Chapter 3 of "Applied Nonparametric and Modern Statistics".<ref>{{cite web|last=Irizarry|first=Rafael|title=Applied Nonparametric and Modern Statistics|url=https://rafalab.dfci.harvard.edu/pages/754/|access-date=2025-05-16}}</ref>
 
==See also==