Wikipedia:WikiProject Logic/Standards for notation: Difference between revisions

Content deleted Content added
Not part of the MOS
 
(32 intermediate revisions by 12 users not shown)
Line 72:
| {{and}}
|'''{{tl|and}}'''
| &\And
| [[Logical conjunction]]
|-
Line 113:
|'''{{tl|nand}}'''
| \uparrow
| [[Sheffer stroke|Alternative denial (nandNand)]]
|-
| Exclusive disjunction
Line 156:
! Name
! Description/Usage
! Symbol(sP)
! Preferred Symbol(sP)
! Template
! <nowiki><math></nowiki>
Line 163:
|-
|Definition
|X <math>X\stackrel{\rm def}{=}y_1,y_2,\dots</math> y<sub>1</sub>,y<sub>2</sub>,...
|&nbsp;<math>\stackrel{\rm def}{=}</math>
|<math>\stackrel{\rm def}=</math>
|{{define}}
|none
|'''{{tl|define}}'''
|\stackrel{\rm def}{=}
|[[Definition]]
|-
|Theorem
|<math> X \vdash Y </math>, <math>\vdash Z </math>, <math>A \vdash_S Xvdash_xo</math>
|{{teem}}
|{{teem}}
|'''{{tlml|teem}}'''
|\vdash
|[[Turnstile (symbol)]]
|-
|Semantic Entailment
|<math>A \models_L Xmodels_xo</math>, <math>\models Xmodelxo</math>
|<math>\models</math>
|{{models}}
|'''{{tlml|models}}'''
|\models
|[[LogicalDouble implicationtu]]
|-
|True, tautology[[Tautology (logic)|tu]]
|&nbsp;<math>\vDash \top</math>
|<math>\top</math> or T or 1
|{{true}}
|'''{{tl|true}}'''
'''
|\top
|[[Tautologym (logicl)]]
|-
|False, contradiction
|&nbsp;<math>\vDash \neg\bott</math>
|<math>\bott</math> or F or 0
|{{false}}
|'''{{tl|false}}'''
[[:Category:Year of birth missing (living people)]]
|\bot
'''
|[[Logical value]]
|\
|[[]]
|}
 
Line 206 ⟶ 209:
For consistency use the following terminology in Logic articles:
''Drafting in progress drafted'' cf [[Wikipedia talk:WikiProject Logic/Standards for notation#Terminology]]
<blockquote>
'''It's good to talk (and a common language can only help.)'''
</blockquote>
 
===Common basis for syntax and semantics===
One can talk about syntax while ignoring any possible semantics, or talk about semantics while ignoring that there might be a language describing them. The terms in the following table are common to both aspects.
 
{| class="wikitable"
|-
! Terminology used
! Preferred Terminologyterminology
! Preferred meaning
|-
|signature
|logical connective, connective, logical operator, propositional operator, truth-functional connective
|signature
|Preferred Terminology
|a set of non-logical symbols with specified arities
|-
|non-logical symbol, non-logical constant
|propositional logic, sentential logic, propositional calculus, sentential calculus, statement logic, statement calculus
|non-logical symbol
|
|any of the symbols below
|-
|function letter (arity >0), operation letter/symbol (arity >0), function symbol (arity ≥0), function symbol (arity >0)
|first-order predicate logic, first-order logic, predicate logic,
|function symbol
|either arity >0, i.e. excl. constant symbols,<br>or arity ≥0, i.e. including constant symbols
|-
|individual constant, constant, (individual) constant symbol, constant symbol
|constant symbol
|
|-
|predicate letter (arity >0), predicate symbol (arity ≥0), relation symbol (arity >0)
|predicate symbol or relation symbol
|either arity >0, i.e. excl. symbols below<br>or arity ≥0, i.e. including symbols below
|-
|propositional variable, propositional letter, propositional symbol, sentential variable, sentential letter, sentential symbol
|in propositional/sentential logic:<br>prop./sent. variable<br>in first-order logic:<br>nullary predicate/relation symbol
|
|}
'''Note:''' Nullary function symbols are constant symbols, and nullary predicate/relation symbols are propositional/sentential symbols. What differs about first-order logic between authors is 1) whether constant symbols are called (nullary) function symbols, and 2) whether proposition symbols are even allowed.
 
===Syntax===
The terms in the following table are used when working with syntax and are only marginally related to semantics.
 
{| class="wikitable"
|-
! Terminology used
|Non-logical symbol, non-logical constant
! Preferred Terminology
|
|-
|logical connective, connective, logical operator, propositional operator, truth-functional connective, logical connective symbol
|___domain, ___domain of disourse, universe of discourse, universe, carrier, underlying set
 
|
|-
|language, formal language, artificial language
|individual constant, constant, (individual) constant symbol, constant symbol
|
|-
|sentence, statement, proposition (all when meaning a sentence in a formal language)
|predicate letter (arity >0), predicate symbol (arity ≥0) relation symbol (arity >0)
|
|-
|[[truthbearer]]
|function letter (arity >0), operation letter/symbol (arity >0), function symbol (arity ≥0)function symbol (arity >0)
|
|-
|well-formed formula, wff, formula
|extension, denotation
|
|}
 
===Semantics===
The terms in the following table relate to semantics; they are not needed when discussing only syntax, although of course they motivate the syntax.
 
{| class="wikitable"
|-
! Terminology used
|intepretation
! Preferred Terminology
|
|-
|___domain, ___domain of discourse, universe of discourse, universe, carrier, underlying set
|model
|
|-
|[[extension]], [[denotation]]
|signature
|
|-
Line 255 ⟶ 289:
|
|-
|function, operator
|language, formal language, artificial language
|
|-
|[[Property (philosophy)|property]], attribute, relation (arity=1)
|argument, input
|
|-
|[[Property (philosophy)|property]] (arity>1), relation (arity>1)
|value, output
|
|}
 
===Relation between syntax and semantics===
{| class="wikitable"
|-
! Terminology used
|function, operator
! Preferred Terminology
|
|-
|model
|property, attribute, relation (arity=1)
|
|-
|interpretation
|property (arity>1), relation (arity>1)
|
|}
 
===Unsorted===
{| class="wikitable"
|-
! Terminology used
|[[formal system]], logical system, logistic system,logical calculus, logic
! Preferred Terminology
|
|-
|propositional logic, sentential logic, propositional calculus, sentential calculus, statement logic, statement calculus
|formal logic, mathematical logic, symbolic logic
|propositional logic
|
|-
|first-order predicate logic, first-order logic, predicate logic,
|elementary logic
|
|-
|argument, input
|sentence, statement, proposition (all when meaning a sentence in a formal language)
|
|-
|value, output
|
|
|-
|[[formal system]], logical system, logistic system, logical calculus, logic
|
|
|-
|formal logic, mathematical logic, symbolic logic
|
|
|-
|elementary logic
|
|}