Content deleted Content added
MuCephei14 (talk | contribs) →General rational argument: This conjecture is false. |
m Open access bot: url-access=subscription updated in citation with #oabot. |
||
(19 intermediate revisions by 7 users not shown) | |||
Line 1:
{{Short description|Mathematical constants}}
The [[gamma function]] is an important [[special function]] in [[mathematics]]. Its particular values can be expressed in closed form for [[integer]]
==Integers and half-integers==
Line 19:
and so on. For non-positive integers, the gamma function is not defined.
For positive half-integers <math> \frac{k}{2} </math> where <math> k\in 2\mathbb{N}^*+1 </math> is an odd integer greater or equal <math>3</math>, the function values are given exactly by
:<math>\Gamma \left (\tfrac{
or equivalently, for non-negative integer values of {{mvar|n}}:
Line 85:
\end{align}</math>
where {{math|''n''!<sup>(''q'')</sup>}} denotes the {{mvar|q}}th [[
:<math>\Gamma\left(\tfrac13\right) \approx 2.678\,938\,534\,707\,747\,6337</math> {{OEIS2C|A073005}}
Line 96:
As <math>n</math> tends to infinity,
:<math>\Gamma\left(\tfrac1n\right) \sim n-\gamma
where <math>\gamma</math> is the [[Euler–Mascheroni constant]] and <math>\sim</math> denotes [[Asymptotic analysis|asymptotic equivalence]].
It is unknown whether these constants are [[transcendental number|transcendental]] in general, but
The number <math>\Gamma\left(\tfrac14\right)</math> is related to the [[lemniscate constant]] {{mvar|<math>\varpi</math>}} by
:<math>\Gamma\left(\tfrac14\right) = \sqrt{2\varpi\sqrt{2\pi}}
Borwein and Zucker have found that {{math|Γ({{sfrac|''n''|24}})}} can be expressed algebraically in terms of {{mvar|π}}, {{math|''K''(''k''(1))}}, {{math|''K''(''k''(2))}}, {{math|''K''(''k''(3))}}, and {{math|''K''(''k''(6))}} where {{math|''K''(''k''(''N''))}} is a [[complete elliptic integral of the first kind]]. This permits efficiently approximating the gamma function of rational arguments to high precision using [[quadratic convergence|quadratically convergent]] [[arithmetic–geometric mean]] iterations. For example:
:<math>\begin{align}
\Gamma \left(\tfrac16 \right) &= \frac{\sqrt{\frac{3}{\pi }} \Gamma\left(\frac{1}{3}\right)^2}{\sqrt[3]{2}} \\
\Gamma \left(\tfrac14 \right) &= 2\sqrt{K\left( \tfrac 12 \right)\sqrt{\pi}} \\
\Gamma \left(\tfrac13 \right) &= \frac{2^{7/9} \sqrt[3]{\pi K\left(\frac{1}{4}\left(2-\sqrt{3}\right)\right)}}{\sqrt[12]{3}} \\
\Gamma \left(\tfrac
\frac{\Gamma \left(\
\end{align}</math>
No similar relations are known for {{math|Γ({{sfrac|1|5}})}} or other denominators.
In particular, where AGM() is the [[arithmetic–geometric mean]], we have<ref>{{cite web|url=https://math.stackexchange.com/q/1631760 |title=Archived copy |accessdate=2015-03-09 }}</ref>
:<math>\Gamma\left(\tfrac13\right) = \frac{2^\frac{7}{9}\cdot \pi^\frac23}{3^\frac{1}{12}\cdot \operatorname{AGM}\left(2,\sqrt{2+\sqrt{3}}\right)^\frac13}</math>
:<math>\Gamma\left(\tfrac14\right) = \sqrt \frac{(2 \pi)^\frac32}{\operatorname{AGM}\left(\sqrt 2, 1\right)}</math>
:<math>\Gamma\left(\tfrac16\right) = \frac{2^\frac{14}{9}\cdot 3^\frac13\cdot \pi^\frac56}{\operatorname{AGM}\left(1+\sqrt{3},\sqrt{8}\right)^\frac23}.</math>
Other formulas include the [[infinite product]]s
Line 140 ⟶ 134:
where {{mvar|A}} is the [[Glaisher–Kinkelin constant]] and {{mvar|G}} is [[Catalan's constant]].
The following two representations for
| last = Mező
| first = István
Line 153 ⟶ 147:
}}</ref>
:<math>\sqrt{\frac{\pi\sqrt{e^\pi}}{2}}\frac{1}{\Gamma
and
:<math>\sqrt{\frac{\pi}{2}}\frac{1}{\Gamma
where {{math|''θ''<sub>1</sub>}} and {{math|''θ''<sub>4</sub>}} are two of the [[Theta function|Jacobi theta functions]].
There also exist a number of [[Carl Johan Malmsten|Malmsten integrals]] for certain values of the gamma function:<ref name=":1">{{Cite journal |last=Blagouchine |first=Iaroslav V. |date=2014-10-01 |title=Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results |url=https://link.springer.com/article/10.1007/s11139-013-9528-5 |journal=The Ramanujan Journal |language=en |volume=35 |issue=1 |pages=21–110 |doi=10.1007/s11139-013-9528-5 |issn=1572-9303|url-access=subscription }}</ref>
:<math>\int_1^\infty \frac{\ln \ln t}{1+t^2} = \frac\pi4\left(2\ln2 + 3\ln\pi-4\Gamma\left(\tfrac14\right)\right)</math>
:<math>\int_1^\infty \frac{\ln \ln t}{1+t+t^2} = \frac\pi{6\sqrt3}\left(8\ln2 -3\ln3 + 8\ln\pi -12\Gamma\left(\tfrac13\right)\right)</math>
== Products ==
Line 181 ⟶ 172:
In general:
:<math> \prod_{r=1}^n \Gamma\left(\tfrac{r}{n+1}\right) = \sqrt{\frac{(2\pi)^n}{n+1}}</math>
From those products can be deduced other values, for example, from the former equations for <math> \prod_{r=1}^3 \Gamma\left(\tfrac{r}{4}\right) </math>, <math>\Gamma\left(\tfrac{1}{4}\right) </math> and <math>\Gamma\left(\tfrac{2}{4}\right) </math>, can be deduced:
<math>\Gamma\left(\tfrac{3}{4}\right) =\left(\tfrac{\pi} {2}\right) ^{\tfrac{1}{4}} {\operatorname{AGM}\left(\sqrt 2, 1\right)}^{\tfrac{1}{2}}</math>
Other rational relations include
Line 190 ⟶ 185:
:<math>\frac{\Gamma\left(\frac{1}{5}\right)^2}{\Gamma\left(\frac{1}{10}\right)\Gamma\left(\frac{3}{10}\right)} = \frac{\sqrt{1+\sqrt{5}}}{2^{\tfrac{7}{10}}\sqrt[4]{5}}</math>
and many more relations for
Gamma quotients with algebraic values must be "poised" in the sense that the sum of arguments is the same (modulo 1) for the denominator and the numerator.
A more sophisticated example:
:<math> \frac{ \Gamma\left(\frac{11}{42}\right)\Gamma\left(\frac27\right)}{\Gamma\left(\frac1{21}\right)\Gamma\left(\frac1{2}\right)} = \frac{8 \sin\left(\frac\pi7\right) \sqrt{\sin\left(\frac\pi{21}\right) \sin\left(\frac{4\pi}{21}\right) \sin\left(\frac{5\pi}{21}\right)}}{2^{\frac1{42}}3^{\frac9{28}}7^{\frac13}} </math><ref>[https://math.stackexchange.com/q/2804457 math.stackexchange.com]</ref>
== Imaginary and complex arguments==
Line 209 ⟶ 199:
:<math>\Gamma(i) = \frac{G(1+i)}{G(i)} = e^{-\log G(i)+ \log G(1+i)}.</math>
Curiously enough, <math>\Gamma(i)</math> appears in the below integral evaluation:<ref>[https://sites.google.com/site/istvanmezo81/monthly-problems The webpage of István Mező]</ref>
:<math>\int_0^{\pi/2}\{\cot(x)\}\,dx=1-\frac{\pi}{2}+\frac{i}{2}\log\left(\frac{\pi}{\sinh(\pi)\Gamma(i)^2}\right).</math>
Here <math>\{\cdot\}</math> denotes the [[fractional part]].
Because of the [[Reflection formula|Euler Reflection Formula]], and the fact that <math>\Gamma(\bar{z})=\bar{\Gamma}(z)</math>, we have an expression for the [[modulus squared]] of the Gamma function evaluated on the imaginary axis:
:<math>\left|\Gamma(i\kappa)\right|^2=\frac{\pi}{\kappa\sinh(\pi\kappa)}</math>
Line 226 ⟶ 220:
The gamma function has a [[local minimum]] on the positive real axis
:<math>x_{\min} = 1.461\,632\,144\,968\,362\,341\,262\,659\,5423\ldots\,</math> {{OEIS2C|A030169}}
with the value
:<math>\Gamma\left(x_{\min}\right) = 0.885\,603\,194\,410\,888\,700\,278\,815\,9005\ldots\,</math> {{OEIS2C|A030171}}.
Integrating the [[reciprocal gamma function]] along the positive real axis also gives the [[Fransén–Robinson constant]].
Line 260 ⟶ 254:
| {{val|−9.7026725400018637360844267649}} || {{0|−}}{{val|0.0000021574161045228505405031}} || {{OEIS2C|A256687}}
|}
The only values of {{math|''x'' > 0}} for which {{math|1=Γ(''x'') = ''x''}} are {{math|1=''x'' = 1}} and {{math|''x'' ≈ {{val|3.5623822853908976914156443427}}}}... {{OEIS2C|A218802}}.
==See also==
Line 265 ⟶ 261:
==References==
<references />
==Further reading==
* {{Cite journal
|first1=F.
|last1=Gramain
|title=Sur le théorème de Fukagawa-Gel'fond
|journal=Invent. Math.
|volume=63
|number=3
|doi=10.1007/BF01389066
|year=1981
|pages=495–506
|bibcode=1981InMat..63..495G
|s2cid=123079859
}}
* {{Cite journal
|first1=J. M.
|last1=Borwein
|first2=I. J.
|last2=Zucker
|title=Fast Evaluation of the Gamma Function for Small Rational Fractions Using Complete Elliptic Integrals of the First Kind
|journal=IMA Journal of Numerical Analysis
|volume=12
|issue=4
|pages=519–526
|year=1992
|mr=1186733
|doi=10.1093/imanum/12.4.519
}}
* X. Gourdon & P. Sebah. [http://numbers.computation.free.fr/Constants/Miscellaneous/gammaFunction.html Introduction to the Gamma Function]
* {{MathWorld|title=Gamma Function|urlname=GammaFunction}}
* {{cite journal
|first1=Raimundas |last1=Vidunas
|title=Expressions for values of the gamma function
|arxiv=math.CA/0403510
|doi=10.2206/kyushujm.59.267
|volume=59
|issue=2
|journal=Kyushu Journal of Mathematics
|pages=267–283|year=2005
|s2cid=119623635
}}
* {{cite journal
|first1=Raimundas | last1=Vidunas
|title=Expressions for values of the gamma function
|journal=Kyushu J. Math. |year=2005
|volume=59 | number=2 | pages=267–283 | mr=2188592 | doi=10.2206/kyushujm.59.267|arxiv=math/0403510| s2cid=119623635
}}
* {{Cite journal
|first1=V. S.
|last1=Adamchik
|url=https://www.
|title=Multiple Gamma Function and Its Application to Computation of Series
|journal=The Ramanujan Journal
|