Content deleted Content added
MuCephei14 (talk | contribs) →General rational argument: Why give a wrong formula? |
m Open access bot: url-access=subscription updated in citation with #oabot. |
||
(14 intermediate revisions by 7 users not shown) | |||
Line 1:
{{Short description|Mathematical constants}}
The [[gamma function]] is an important [[special function]] in [[mathematics]]. Its particular values can be expressed in closed form for [[integer]]
==Integers and half-integers==
Line 19:
and so on. For non-positive integers, the gamma function is not defined.
For positive half-integers <math> \frac{k}{2} </math> where <math> k\in 2\mathbb{N}^*+1 </math> is an odd integer greater or equal <math>3</math>, the function values are given exactly by
:<math>\Gamma \left (\tfrac{
or equivalently, for non-negative integer values of {{mvar|n}}:
Line 102:
It is unknown whether these constants are [[transcendental number|transcendental]] in general, but {{math|Γ({{sfrac|1|3}})}} and {{math|Γ({{sfrac|1|4}})}} were shown to be transcendental by [[Chudnovsky brothers|G. V. Chudnovsky]]. {{math|Γ({{sfrac|1|4}}) <big><big>/</big></big> {{radic|π|4}}}} has also long been known to be transcendental, and [[Yuri Valentinovich Nesterenko|Yuri Nesterenko]] proved in 1996 that {{math|Γ({{sfrac|1|4}})}}, {{math|π}}, and {{math|''e''<sup>π</sup>}} are [[algebraically independent]].
For <math>n\geq 2</math> at least one of the two numbers
The number
:<math>\Gamma\left(\tfrac14\right) = \sqrt{2\varpi\sqrt{2\pi}}</math>
Line 113:
\Gamma \left(\tfrac14 \right) &= 2\sqrt{K\left( \tfrac 12 \right)\sqrt{\pi}} \\
\Gamma \left(\tfrac13 \right) &= \frac{2^{7/9} \sqrt[3]{\pi K\left(\frac{1}{4}\left(2-\sqrt{3}\right)\right)}}{\sqrt[12]{3}} \\
\Gamma \left(\
\frac{\Gamma \left(\frac{1}{8}\right)}{\Gamma \left(\frac{3}{8}\right)} &= \frac{2 \sqrt{\left(1+\sqrt{2}\right) K\left(\frac{1}{2}\right)}}{\sqrt[4]{\pi }}
\end{align}</math>
Line 119:
No similar relations are known for {{math|Γ({{sfrac|1|5}})}} or other denominators.
In particular, where AGM() is the [[arithmetic–geometric mean]], we have<ref>{{cite web|url=https://math.stackexchange.com/q/1631760 |title=Archived copy |accessdate=2015-03-09
:<math>\Gamma\left(\tfrac13\right) = \frac{2^\frac{7}{9}\cdot \pi^\frac23}{3^\frac{1}{12}\cdot \operatorname{AGM}\left(2,\sqrt{2+\sqrt{3}}\right)^\frac13}</math>
:<math>\Gamma\left(\tfrac14\right) = \sqrt \frac{(2 \pi)^\frac32}{\operatorname{AGM}\left(\sqrt 2, 1\right)}</math>
Line 154:
where {{math|''θ''<sub>1</sub>}} and {{math|''θ''<sub>4</sub>}} are two of the [[Theta function|Jacobi theta functions]].
There also exist a number of [[Carl Johan Malmsten|Malmsten integrals]] for certain values of the gamma function:<ref name=":1">{{Cite journal |last=Blagouchine |first=Iaroslav V. |date=2014-10-01 |title=Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results |url=https://link.springer.com/article/10.1007/s11139-013-9528-5 |journal=The Ramanujan Journal |language=en |volume=35 |issue=1 |pages=21–110 |doi=10.1007/s11139-013-9528-5 |issn=1572-9303|url-access=subscription }}</ref>
:<math>\int_1^\infty \frac{\ln \ln t}{1+t^2} = \frac\pi4\left(2\ln2 + 3\ln\pi-4\Gamma\left(\tfrac14\right)\right)</math>
:<math>\int_1^\infty \frac{\ln \ln t}{1+t+t^2} = \frac\pi{6\sqrt3}\left(8\ln2 -3\ln3 + 8\ln\pi -12\Gamma\left(\tfrac13\right)\right)</math>
== Products ==
Line 215 ⟶ 220:
The gamma function has a [[local minimum]] on the positive real axis
:<math>x_{\min} = 1.461\,632\,144\,968\,362\,341\,262\,659\,5423\ldots\,</math> {{OEIS2C|A030169}}
with the value
:<math>\Gamma\left(x_{\min}\right) = 0.885\,603\,194\,410\,888\,700\,278\,815\,9005\ldots\,</math> {{OEIS2C|A030171}}.
Integrating the [[reciprocal gamma function]] along the positive real axis also gives the [[Fransén–Robinson constant]].
Line 249 ⟶ 254:
| {{val|−9.7026725400018637360844267649}} || {{0|−}}{{val|0.0000021574161045228505405031}} || {{OEIS2C|A256687}}
|}
The only values of {{math|''x'' > 0}} for which {{math|1=Γ(''x'') = ''x''}} are {{math|1=''x'' = 1}} and {{math|''x'' ≈ {{val|3.5623822853908976914156443427}}}}... {{OEIS2C|A218802}}.
==See also==
Line 255 ⟶ 262:
==References==
<references />
==Further reading==
* {{Cite journal
|first1=F.
Line 267 ⟶ 276:
|bibcode=1981InMat..63..495G
|s2cid=123079859
}}
* {{Cite journal
Line 284 ⟶ 292:
}}
* X. Gourdon & P. Sebah. [http://numbers.computation.free.fr/Constants/Miscellaneous/gammaFunction.html Introduction to the Gamma Function]
* {{MathWorld|title=Gamma Function|urlname=GammaFunction}}
* {{cite journal
|