Content deleted Content added
Tito Omburo (talk | contribs) m Restored notation |
Tito Omburo (talk | contribs) |
||
(28 intermediate revisions by 20 users not shown) | |||
Line 4:
[[File:Components stress tensor.svg|right|thumb|300px|The second-order [[Cauchy stress tensor]] <math>\mathbf{T}</math> describes the stress experienced by a material at a given point. For any unit vector <math>\mathbf{v}</math>, the product <math>\mathbf{T} \cdot \mathbf{v}</math> is a vector, denoted <math>\mathbf{T}(\mathbf{v})</math>, that quantifies the force per area along the plane perpendicular to <math>\mathbf{v}</math>. This image shows, for cube faces perpendicular to <math>\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3</math>, the corresponding stress vectors <math>\mathbf{T}(\mathbf{e}_1), \mathbf{T}(\mathbf{e}_2), \mathbf{T}(\mathbf{e}_3)</math> along those faces. Because the stress tensor takes one vector as input and gives one vector as output, it is a second-order tensor.]]
In [[mathematics]], a '''tensor''' is an [[mathematical object|algebraic object]] that describes a [[Multilinear map|multilinear]] relationship between sets of [[algebraic structure|algebraic objects]]
Tensors have become important in [[physics]] because they provide a concise mathematical framework for formulating and solving physics problems in areas such as [[mechanics]] ([[Stress (mechanics)|stress]], [[elasticity (physics)|elasticity]], [[quantum mechanics]], [[fluid mechanics]], [[moment of inertia]], ...), [[Classical electromagnetism|electrodynamics]] ([[electromagnetic tensor]], [[Maxwell stress tensor|Maxwell tensor]], [[permittivity]], [[magnetic susceptibility]], ...), and [[general relativity]] ([[stress–energy tensor]], [[Riemann curvature tensor|curvature tensor]], ...). In applications, it is common to study situations in which a different tensor can occur at each point of an object; for example the stress within an object may vary from one ___location to another. This leads to the concept of a [[tensor field]]. In some areas, tensor fields are so ubiquitous that they are often simply called "tensors".
Line 18:
=== As multidimensional arrays ===
A tensor may be represented as a (potentially multidimensional) array. Just as a [[Vector space|vector]] in an {{mvar|n}}-[[dimension (vector space)|dimensional]] space is represented by a [[multidimensional array|one-dimensional]] array with {{mvar|n}} components with respect to a given [[Basis (linear algebra)#Ordered bases and coordinates|basis]], any tensor with respect to a basis is represented by a multidimensional array. For example, a [[linear operator]] is represented in a basis as a two-dimensional square {{math|''n'' × ''n''}} array. The numbers in the multidimensional array are known as the ''components'' of the tensor. They are denoted by indices giving their position in the array, as [[subscript and superscript|subscripts and superscripts]], following the symbolic name of the tensor. For example, the components of an order
The total number of indices ({{mvar|m}}) required to identify each component uniquely is equal to the ''dimension'' or the number of ''ways'' of an array, which is why a tensor is sometimes referred to as an {{mvar|m}}-dimensional array or an {{mvar|m}}-way array. The total number of indices is also called the ''order'', ''degree'' or ''rank'' of a tensor,<ref name=DeLathauwerEtAl2000 >{{cite journal| last1= De Lathauwer |first1= Lieven| last2= De Moor |first2= Bart| last3= Vandewalle |first3= Joos| date=2000|title=A Multilinear Singular Value Decomposition |journal= [[SIAM J. Matrix Anal. Appl.]]|volume=21|issue= 4|pages=1253–1278|doi= 10.1137/S0895479896305696|s2cid= 14344372|url= https://alterlab.org/teaching/BME6780/papers+patents/De_Lathauwer_2000.pdf}}</ref><ref name=Vasilescu2002Tensorfaces >{{cite book |first1=M.A.O. |last1=Vasilescu |first2=D. |last2=Terzopoulos |title=Computer Vision — ECCV 2002 |chapter=Multilinear Analysis of Image Ensembles: TensorFaces |series=Lecture Notes in Computer Science |volume=2350 |pages=447–460 |doi=10.1007/3-540-47969-4_30 |date=2002 |isbn=978-3-540-43745-1 |s2cid=12793247 |chapter-url=http://www.cs.toronto.edu/~maov/tensorfaces/Springer%20ECCV%202002_files/eccv02proceeding_23500447.pdf |access-date=2022-12-29 |archive-date=2022-12-29 |archive-url=https://web.archive.org/web/20221229090931/http://www.cs.toronto.edu/~maov/tensorfaces/Springer%20ECCV%202002_files/eccv02proceeding_23500447.pdf |url-status=dead }}</ref><ref name=KoldaBader2009 >{{cite journal| last1= Kolda |first1= Tamara| last2= Bader |first2= Brett| date=2009|title=Tensor Decompositions and Applications |journal= [[SIAM Review]]|volume=51|issue= 3|pages=455–500|doi= 10.1137/07070111X|bibcode= 2009SIAMR..51..455K|s2cid= 16074195|url= https://www.kolda.net/publication/TensorReview.pdf}}</ref> although the term "rank" generally has [[tensor rank|another meaning]] in the context of matrices and tensors.
Line 88:
{{Main|Multilinear map}}
A downside to the definition of a tensor using the multidimensional array approach is that it is not apparent from the definition that the defined object is indeed basis independent, as is expected from an intrinsically geometric object. Although it is possible to show that transformation laws indeed ensure independence from the basis, sometimes a more intrinsic definition is preferred. One approach that is common in [[differential geometry]] is to define tensors relative to a fixed (finite-dimensional) vector space ''V'', which is usually taken to be a particular vector space of some geometrical significance like the [[tangent space]] to a manifold.<ref>{{citation|last=Lee|first=John|title=Introduction to smooth manifolds|url={{google books |plainurl=y |id=4sGuQgAACAAJ|page=173}}|page=173|year=2000|publisher=Springer|isbn=978-0-387-95495-0}}</ref> In this approach, a type {{nowrap|(''p'', ''q'')}} tensor ''T'' is defined as a [[multilinear map]],
:<math> T: \underbrace{V^* \times\dots\times V^*}_{p \text{ copies}} \times \underbrace{ V \times\dots\times V}_{q \text{ copies}} \rightarrow \
where ''V''<sup>∗</sup> is the corresponding [[dual space]] of covectors, which is linear in each of its arguments. The above assumes ''V'' is a vector space over the [[real number]]s, {{tmath|\R}}. More generally, ''V'' can be taken over any [[Field (mathematics)|field]] ''F'' (e.g. the [[complex number]]s), with ''F'' replacing {{tmath|\R}} as the codomain of the multilinear maps.
Line 161:
|issue=7–9
|issn=0302-7597
}} From p. 498: "And if we agree to call the ''square root'' (taken with a suitable sign) of this scalar product of two conjugate polynomes, P and KP, the common TENSOR of each, ... "</ref> to describe something different from what is now meant by a tensor.<ref group=Note>Namely, the [[norm (mathematics)|norm operation]] in a vector space.</ref> Gibbs introduced [[
Tensor calculus was developed around 1890 by [[Gregorio Ricci-Curbastro]] under the title ''absolute differential calculus'', and originally presented
|first=G. |last=Ricci Curbastro
|title=Résumé de quelques travaux sur les systèmes variables de fonctions associés à une forme différentielle quadratique
Line 174:
}}</ref> It was made accessible to many mathematicians by the publication of Ricci-Curbastro and [[Tullio Levi-Civita]]'s 1900 classic text ''Méthodes de calcul différentiel absolu et leurs applications'' (Methods of absolute differential calculus and their applications).{{sfn|Ricci|Levi-Civita|1900}} In Ricci's notation, he refers to "systems" with covariant and contravariant components, which are known as tensor fields in the modern sense.<ref name="auto"/>
In the 20th century, the subject came to be known as ''tensor analysis'', and achieved broader acceptance with the introduction of [[Albert
|first=Abraham |last=Pais
|title=Subtle Is the Lord: The Science and the Life of Albert Einstein
Line 223:
! rowspan=6 | ''n''
! scope="row" | 0
| [[Scalar (mathematics)|
| [[
| [[
| 3-form
|
|
|
|-
! scope="row" | 1
| [[
| [[
|
|
|
|
Line 241:
|-
! scope="row" | 2
|
|
|
|
|
Line 259:
|-
! scope="row" | ''N''
|[[
|
|
Line 325:
== Operations ==
There are several operations on tensors that again produce a tensor. The linear nature of
=== Tensor product ===
Line 388:
===Machine learning===
{{Main|Tensor (machine learning)}}
The properties of
== Generalizations ==
Line 450 ⟶ 451:
* {{wiktionary-inline|tensor}}
* [[Array data type]], for tensor storage and manipulation
* [[Bitensor]]
=== Foundational ===
Line 601 ⟶ 603:
[[Category:Concepts in physics]]
[[Category:
[[Category:Tensors]]
|