Content deleted Content added
No edit summary |
Tito Omburo (talk | contribs) |
||
(12 intermediate revisions by 8 users not shown) | |||
Line 4:
[[File:Components stress tensor.svg|right|thumb|300px|The second-order [[Cauchy stress tensor]] <math>\mathbf{T}</math> describes the stress experienced by a material at a given point. For any unit vector <math>\mathbf{v}</math>, the product <math>\mathbf{T} \cdot \mathbf{v}</math> is a vector, denoted <math>\mathbf{T}(\mathbf{v})</math>, that quantifies the force per area along the plane perpendicular to <math>\mathbf{v}</math>. This image shows, for cube faces perpendicular to <math>\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3</math>, the corresponding stress vectors <math>\mathbf{T}(\mathbf{e}_1), \mathbf{T}(\mathbf{e}_2), \mathbf{T}(\mathbf{e}_3)</math> along those faces. Because the stress tensor takes one vector as input and gives one vector as output, it is a second-order tensor.]]
In [[mathematics]], a '''tensor''' is an [[mathematical object|algebraic object]] that describes a [[Multilinear map|multilinear]] relationship between sets of [[algebraic structure|algebraic objects]]
Tensors have become important in [[physics]] because they provide a concise mathematical framework for formulating and solving physics problems in areas such as [[mechanics]] ([[Stress (mechanics)|stress]], [[elasticity (physics)|elasticity]], [[quantum mechanics]], [[fluid mechanics]], [[moment of inertia]], ...), [[Classical electromagnetism|electrodynamics]] ([[electromagnetic tensor]], [[Maxwell stress tensor|Maxwell tensor]], [[permittivity]], [[magnetic susceptibility]], ...), and [[general relativity]] ([[stress–energy tensor]], [[Riemann curvature tensor|curvature tensor]], ...). In applications, it is common to study situations in which a different tensor can occur at each point of an object; for example the stress within an object may vary from one ___location to another. This leads to the concept of a [[tensor field]]. In some areas, tensor fields are so ubiquitous that they are often simply called "tensors".
Line 88:
{{Main|Multilinear map}}
A downside to the definition of a tensor using the multidimensional array approach is that it is not apparent from the definition that the defined object is indeed basis independent, as is expected from an intrinsically geometric object. Although it is possible to show that transformation laws indeed ensure independence from the basis, sometimes a more intrinsic definition is preferred. One approach that is common in [[differential geometry]] is to define tensors relative to a fixed (finite-dimensional) vector space ''V'', which is usually taken to be a particular vector space of some geometrical significance like the [[tangent space]] to a manifold.<ref>{{citation|last=Lee|first=John|title=Introduction to smooth manifolds|url={{google books |plainurl=y |id=4sGuQgAACAAJ|page=173}}|page=173|year=2000|publisher=Springer|isbn=978-0-387-95495-0}}</ref> In this approach, a type {{nowrap|(''p'', ''q'')}} tensor ''T'' is defined as a [[multilinear map]],
:<math> T: \underbrace{V^* \times\dots\times V^*}_{p \text{ copies}} \times \underbrace{ V \times\dots\times V}_{q \text{ copies}} \rightarrow \
where ''V''<sup>∗</sup> is the corresponding [[dual space]] of covectors, which is linear in each of its arguments. The above assumes ''V'' is a vector space over the [[real number]]s, {{tmath|\R}}. More generally, ''V'' can be taken over any [[Field (mathematics)|field]] ''F'' (e.g. the [[complex number]]s), with ''F'' replacing {{tmath|\R}} as the codomain of the multilinear maps.
Line 223:
! rowspan=6 | ''n''
! scope="row" | 0
| [[Scalar (mathematics)|
| [[
| [[
| 3-form
|
|
|
|-
! scope="row" | 1
| [[
| [[
|
|
|
|
Line 241:
|-
! scope="row" | 2
|
|
|
|
|
Line 259:
|-
! scope="row" | ''N''
|[[
|
|
Line 325:
== Operations ==
There are several operations on tensors that again produce a tensor. The linear nature of
=== Tensor product ===
Line 388:
===Machine learning===
{{Main|Tensor (machine learning)}}
The properties of
== Generalizations ==
|