Content deleted Content added
→Legal status: sai.net Tag: Reverted |
Undid revision 1298501550 by 2.196.141.187 (talk) Editor seems to have misunderstood what ticker tape is |
||
(32 intermediate revisions by 22 users not shown) | |||
Line 3:
{{redirect|Algorythm|the album|Beyond Creation}}
{{Use mdy dates|date=September 2017}}
[[File:GCD through successive subtractions.svg|thumb|Flowchart of using successive subtractions to find the [[greatest common divisor]] of number ''r'' and ''s''|alt=In a loop, subtract the larger number against the smaller number. Halt the loop when the subtraction will make a number negative. Assess two numbers, whether one of them is equal to zero or not. If yes, take the other number as the greatest common divisor. If no, put the two numbers in the subtraction loop again.]]
In [[mathematics]] and [[computer science]], an '''algorithm''' ({{IPAc-en|audio=en-us-algorithm.ogg|ˈ|æ|l|ɡ|ə|r|ɪ|ð|əm}}) is a finite sequence of [[Rigour#Mathematics|mathematically rigorous]] instructions, typically used to solve a class of specific [[Computational problem|problem]]s or to perform a [[computation]].<ref name=":0">{{Cite web|url=https://www.merriam-webster.com/dictionary/algorithm|title=Definition of ALGORITHM|work=Merriam-Webster Online Dictionary |language=en |access-date=2019-11-14 |archive-url=https://web.archive.org/web/20200214074446/https://www.merriam-webster.com/dictionary/algorithm |archive-date=February 14, 2020|url-status=live}}</ref> Algorithms are used as specifications for performing [[calculation]]s and [[data processing]]. More advanced algorithms can use [[Conditional (computer programming)|conditional]]s to divert the code execution through various routes (referred to as [[automated decision-making]]) and deduce valid [[inference]]s (referred to as [[automated reasoning]]).
In contrast, a [[Heuristic (computer science)|heuristic]] is an approach to solving problems
As an [[effective method]], an algorithm can be expressed within a finite amount of space and time<ref name=":3">"Any classical mathematical algorithm, for example, can be described in a finite number of English words" (Rogers 1987:2).</ref> and in a well-defined [[formal language]]<ref name=":4">Well defined concerning the agent that executes the algorithm: "There is a computing agent, usually human, which can react to the instructions and carry out the computations" (Rogers 1987:2).</ref> for calculating a [[Function (mathematics)|function]].<ref>"an algorithm is a procedure for computing a ''function'' (concerning some chosen notation for integers) ... this limitation (to numerical functions) results in no loss of generality", (Rogers 1987:1).</ref> Starting from an initial state and initial input (perhaps [[Empty string|empty]]),<ref>"An algorithm has [[zero]] or more inputs, i.e., [[Quantity|quantities]] which are given to it initially before the algorithm begins" (Knuth 1973:5).</ref> the instructions describe a computation that, when [[Execution (computing)|execute]]d, proceeds through a finite<ref>"A procedure which has all the characteristics of an algorithm except that it possibly lacks finiteness may be called a 'computational method{{'"}} (Knuth 1973:5).</ref> number of well-defined successive states, eventually producing "output"<ref>"An algorithm has one or more outputs, i.e., quantities which have a specified relation to the inputs" (Knuth 1973:5).</ref> and terminating at a final ending state. The transition from one state to the next is not necessarily [[deterministic]]; some algorithms, known as [[randomized algorithm]]s, incorporate random input.<ref>Whether or not a process with random interior processes (not including the input) is an algorithm is debatable. Rogers opines that: "a computation is carried out in a discrete stepwise fashion, without the use of continuous methods or analog devices ... carried forward deterministically, without resort to random methods or devices, e.g., dice" (Rogers 1987:2).</ref>
== Etymology ==
Around 825 AD, Persian scientist and polymath [[Al-Khwarizmi|Muḥammad ibn Mūsā al-Khwārizmī]] wrote ''kitāb al-ḥisāb al-hindī'' ("Book of Indian computation") and ''kitab al-jam' wa'l-tafriq al-ḥisāb al-hindī'' ("Addition and subtraction in Indian arithmetic").
The word ''[[algorism]]'' in English came to mean the use of place-value notation in calculations; it occurs in the ''[[Ancrene Wisse]]'' from circa 1225.<ref>{{cite web|url=https://www.oed.com/dictionary/algorism_n?tl=true|title=algorism|work=Oxford English Dictionary|access-date=2025-05-18}}</ref> By the time [[Geoffrey Chaucer]] wrote ''[[The Canterbury Tales]]'' in the late 14th century, he used a variant of the same word in describing ''augrym stones'', stones used for place-value calculation.<ref>{{cite web|url=https://chaucer.fas.harvard.edu/pages/millers-prologue-and-tale|title=The Miller's Tale|at=Line 3210|first=Geoffrey|last=Chaucer}}</ref><ref>{{cite book|title=A Glossary of Tudor and Stuart Words: Especially from the Dramatists|editor-first=Anthony Lawson|editor-last=Mayhew|first=Walter William|last=Skeat|publisher=Clarendon Press|year=1914|contribution=agrim, agrum|pages=5–6|contribution-url=https://books.google.com/books?id=z58YAAAAIAAJ&pg=PA5}}</ref> In the 15th century, under the influence of the Greek word ἀριθμός (''arithmos'', "number"; ''cf.'' "arithmetic"), the Latin word was altered to ''algorithmus''.<ref>{{cite book
| last = Grabiner | first = Judith V. | author-link = Judith Grabiner
| editor-last = Matthews | editor-first = Michael R.
| contribution = The role of mathematics in liberal arts education
| date = December 2013
| doi = 10.1007/978-94-007-7654-8_25
| isbn = 9789400776548
| pages = 793–836
| publisher = Springer
| title = International Handbook of Research in History, Philosophy and Science Teaching}}</ref> By 1596, this form of the word was used in English, as ''algorithm'', by [[Thomas Hood (mathematician)|Thomas Hood]].<ref>{{cite web|url=https://www.oed.com/dictionary/algorithm_n|title=algorithm|work=Oxford English Dictionary|access-date=2025-05-18}}</ref>
== Definition ==
{{For|a detailed presentation of the various points of view on the definition of "algorithm"|Algorithm characterizations}}
One informal definition is "a set of rules that precisely defines a sequence of operations",
{{cite book |last1=Simanowski |first1=Roberto |author-link1=Roberto Simanowski |url=https://books.google.com/books?id=RJV5DwAAQBAJ |title=The Death Algorithm and Other Digital Dilemmas |date=2018 |publisher=MIT Press |isbn=9780262536370 |series=Untimely Meditations |volume=14 |___location=Cambridge, Massachusetts |page=147 |translator1-last=Chase |translator1-first=Jefferson |quote=[...] the next level of abstraction of central bureaucracy: globally operating algorithms. |access-date=27 May 2019 |archive-url=https://web.archive.org/web/20191222120705/https://books.google.com/books?id=RJV5DwAAQBAJ |archive-date=December 22, 2019 |url-status=live}}
</ref>
Line 32 ⟶ 40:
=== Ancient algorithms ===
Step-by-step procedures for solving mathematical problems have been recorded since antiquity. This includes in [[Babylonian mathematics]] (around 2500 BC),<ref name="Springer Science & Business Media">{{cite book |last1=Chabert |first1=Jean-Luc |title=A History of Algorithms: From the Pebble to the Microchip |date=2012 |publisher=Springer Science & Business Media |isbn=9783642181924 |pages=7–8}}</ref> [[Egyptian mathematics]] (around 1550 BC),<ref name="Springer Science & Business Media" /> [[Indian mathematics]] (around 800 BC and later),<ref name=":6">{{cite book |last1=Sriram |first1=M. S. |editor1-last=Emch |editor1-first=Gerard G. |editor2-last=Sridharan |editor2-first=R. |editor3-last=Srinivas |editor3-first=M. D. |title=Contributions to the History of Indian Mathematics |date=2005 |publisher=Springer |isbn=978-93-86279-25-5 |page=153 |chapter-url=https://books.google.com/books?id=qfJdDwAAQBAJ&pg=PA153 |language=en |chapter=Algorithms in Indian Mathematics}}</ref><ref>Hayashi, T. (2023, January 1). [https://www.britannica.com/biography/Brahmagupta Brahmagupta]. Encyclopedia Britannica.</ref> the Ifa Oracle (around 500 BC),<ref>{{Cite journal |last=Zaslavsky |first=Claudia |date=1970 |title=Mathematics of the Yoruba People and of Their Neighbors in Southern Nigeria |url=https://www.jstor.org/stable/3027363 |journal=The Two-Year College Mathematics Journal |volume=1 |issue=2 |pages=76–99 |doi=10.2307/3027363 |jstor=3027363 |issn=0049-4925|url-access=subscription }}</ref> [[Greek mathematics]] (around 240 BC),<ref name="Cooke2005">{{cite book|last=Cooke|first=Roger L.|title=The History of Mathematics: A Brief Course|date=2005|publisher=John Wiley & Sons|isbn=978-1-118-46029-0}}</ref> [[Chinese mathematics|Chinese mathematics (around 200 BC and later)]],<ref>{{Cite journal |date=1999 |editor-last=Chabert |editor-first=Jean-Luc |title=A History of Algorithms |url=https://link.springer.com/book/10.1007/978-3-642-18192-4 |journal=SpringerLink |language=en |doi=10.1007/978-3-642-18192-4|isbn=978-3-540-63369-3 |url-access=subscription }}</ref> and [[Arabic mathematics]] (around 800 AD).<ref name="Dooley">{{cite book |last1=Dooley |first1=John F. |title=A Brief History of Cryptology and Cryptographic Algorithms |date=2013 |publisher=Springer Science & Business Media |isbn=9783319016283 |pages=12–3}}</ref>
The earliest evidence of algorithms is found in ancient [[Mesopotamia]]n mathematics. A [[Sumer]]ian clay tablet found in [[Shuruppak]] near [[Baghdad]] and dated to {{Circa|2500 BC}} describes the earliest [[division algorithm]].<ref name="Springer Science & Business Media" /> During the [[First Babylonian dynasty|Hammurabi dynasty]] {{Circa|1800|1600 BC|lk=no}}, [[Babylonia]]n clay tablets described algorithms for computing formulas.<ref>{{cite journal |last1=Knuth |first1=Donald E. |date=1972 |title=Ancient Babylonian Algorithms |url=http://steiner.math.nthu.edu.tw/disk5/js/computer/1.pdf |url-status=dead |journal=Commun. ACM |volume=15 |issue=7 |pages=671–677 |doi=10.1145/361454.361514 |issn=0001-0782 |s2cid=7829945 |archive-url=https://web.archive.org/web/20121224100137/http://steiner.math.nthu.edu.tw/disk5/js/computer/1.pdf |archive-date=2012-12-24}}</ref> Algorithms were also used in [[Babylonian astronomy]]. Babylonian clay tablets describe and employ algorithmic procedures to compute the time and place of significant astronomical events.<ref>{{cite book |last=Aaboe |first=Asger |author-link=Asger Aaboe |title=Episodes from the Early History of Astronomy |date=2001 |publisher=Springer |isbn=978-0-387-95136-2 |place=New York |pages=40–62}}</ref>
Line 83 ⟶ 91:
To illustrate the potential improvements possible even in well-established algorithms, a recent significant innovation, relating to [[Fast Fourier transform|FFT]] algorithms (used heavily in the field of image processing), can decrease processing time up to 1,000 times for applications like medical imaging.<ref>{{cite web| title=Better Math Makes Faster Data Networks| author=Gillian Conahan| date=January 2013| url=http://discovermagazine.com/2013/jan-feb/34-better-math-makes-faster-data-networks| publisher=discovermagazine.com| access-date=May 13, 2014| archive-url=https://web.archive.org/web/20140513212427/http://discovermagazine.com/2013/jan-feb/34-better-math-makes-faster-data-networks| archive-date=May 13, 2014| url-status=live}}</ref> In general, speed improvements depend on special properties of the problem, which are very common in practical applications.<ref name="Hassanieh12">Haitham Hassanieh, [[Piotr Indyk]], Dina Katabi, and Eric Price, "[http://siam.omnibooksonline.com/2012SODA/data/papers/500.pdf ACM-SIAM Symposium On Discrete Algorithms (SODA)] {{webarchive|url=https://web.archive.org/web/20130704180806/http://siam.omnibooksonline.com/2012SODA/data/papers/500.pdf |date=July 4, 2013 }}, Kyoto, January 2012. See also the [http://groups.csail.mit.edu/netmit/sFFT/ sFFT Web Page] {{Webarchive|url=https://web.archive.org/web/20120221145740/http://groups.csail.mit.edu/netmit/sFFT/ |date=February 21, 2012 }}.</ref> Speedups of this magnitude enable computing devices that make extensive use of image processing (like digital cameras and medical equipment) to consume less power.
=== Best Case and Worst Case ===
{{Main|Best, worst and average case}}
The best case of an algorithm refers to the scenario or input for which the algorithm or data structure takes the least time and resources to complete its tasks.<ref>{{Cite web |title=Best Case |url=https://xlinux.nist.gov/dads/HTML/bestcase.html |access-date=29 May 2025 |website=Dictionary of Algorithms and Data Structures |publisher=National Institute of Standards and Technology (NIST) |agency=National Institute of Standards and Technology}}</ref> The worst case of an algorithm is the case that causes the algorithm or data structure to consume the maximum period of time and computational resources.<ref>{{Cite web |title=worst case |url=https://xlinux.nist.gov/dads/HTML/worstcase.html |access-date=29 May 2025 |website=Dictionary of Algorithms and Data Structures |publisher=National Institute of Standards and Technology (NIST) |agency=National Institute of Standards and Technology (NIST)}}</ref>
== Design ==
Line 91 ⟶ 103:
=== Structured programming ===
Per the [[Church–Turing thesis]], any algorithm can be computed by any [[Turing complete]] model. Turing completeness only requires four instruction types—conditional GOTO, unconditional GOTO, assignment, HALT. However, Kemeny and Kurtz observe that, while "undisciplined" use of unconditional GOTOs and conditional IF-THEN GOTOs can result in "[[spaghetti code]]", a programmer can write structured programs using only these instructions; on the other hand "it is also possible, and not too hard, to write badly structured programs in a structured language".<ref>[[John G. Kemeny]] and [[Thomas E. Kurtz]] 1985 ''Back to Basic: The History, Corruption, and Future of the Language'', Addison-Wesley Publishing Company, Inc. Reading, MA, {{ISBN|0-201-13433-0}}.</ref> Tausworthe augments the three [[Structured program theorem|Böhm-Jacopini canonical structures]]:<ref>Tausworthe 1977:101</ref> SEQUENCE, IF-THEN-ELSE, and WHILE-DO, with two more: DO-WHILE and CASE.<ref>Tausworthe 1977:142</ref> An additional benefit of a structured program is that it lends itself to [[proof of correctness|proofs of correctnes]]s using [[mathematical induction]].<ref>Knuth 1973 section 1.2.1, expanded by Tausworthe 1977 at pages 100ff and Chapter 9.1</ref>
== Legal status ==
Line 97 ⟶ 108:
By themselves, algorithms are not usually patentable. In the United States, a claim consisting solely of simple manipulations of abstract concepts, numbers, or signals does not constitute "processes" (USPTO 2006), so algorithms are not patentable (as in ''[[Gottschalk v. Benson]]''). However practical applications of algorithms are sometimes patentable. For example, in ''[[Diamond v. Diehr]]'', the application of a simple [[feedback]] algorithm to aid in the curing of [[synthetic rubber]] was deemed patentable. The [[Software patent debate|patenting of software]] is controversial,<ref>{{Cite news |date=2013-05-16 |title=The Experts: Does the Patent System Encourage Innovation? |url=https://www.wsj.com/articles/SB10001424127887323582904578487200821421958 |access-date=2017-03-29 |work=[[The Wall Street Journal]] |issn=0099-9660}}</ref> and there are criticized patents involving algorithms, especially [[data compression]] algorithms, such as [[Unisys]]'s [[Graphics Interchange Format#Unisys and LZW patent enforcement|LZW patent]]. Additionally, some cryptographic algorithms have export restrictions (see [[export of cryptography]]).
== Classification ==
Line 118 ⟶ 128:
: Brute force is a problem-solving method of systematically trying every possible option until the optimal solution is found. This approach can be very time-consuming, testing every possible combination of variables. It is often used when other methods are unavailable or too complex. Brute force can solve a variety of problems, including finding the shortest path between two points and cracking passwords.
; Divide and conquer
: A [[divide-and-conquer algorithm]] repeatedly reduces a problem to one or more smaller instances of itself (usually [[recursion|recursively]]) until the instances are small enough to solve easily. [[mergesort|Merge sorting]] is an example of divide and conquer, where an unordered list
; Search and enumeration
: Many problems (such as playing [[Chess|ches]]s) can be modelled as problems on [[graph theory|graph]]s. A [[graph exploration algorithm]] specifies rules for moving around a graph and is useful for such problems. This category also includes [[search algorithm]]s, [[branch and bound]] enumeration, and [[backtracking]].
Line 185 ⟶ 195:
* [[Abstract machine]]
* [[ALGOL]]
* [[Logic programming#Algorithm = Logic + Control|Algorithm = Logic + Control]]
* [[Algorithm aversion]]
* [[Algorithm engineering]]
Line 247 ⟶ 258:
* {{cite book| last = Sipser| first = Michael| title = Introduction to the Theory of Computation| year = 2006| publisher = PWS Publishing Company| isbn = 978-0-534-94728-6| url = https://archive.org/details/introductiontoth00sips}}
* {{cite book |last1=Sober |first1=Elliott |last2=Wilson |first2=David Sloan |year=1998 |title=Unto Others: The Evolution and Psychology of Unselfish Behavior |url=https://archive.org/details/untoothersevolut00sobe |url-access=registration |___location=Cambridge |publisher=Harvard University Press|isbn=9780674930469 }}
* {{Cite book|last=Stone|first=Harold S.|title=Introduction to Computer Organization and Data Structures
* {{cite book| last = Tausworthe| first = Robert C| title = Standardized Development of Computer Software Part 1 Methods| year = 1977| publisher = Prentice–Hall, Inc.| ___location = Englewood Cliffs NJ| isbn = 978-0-13-842195-3 }}
* {{Cite journal|last=Turing|first=Alan M.|author-link=A. M. Turing|title=On Computable Numbers, With An Application to the Entscheidungsproblem|journal=[[Proceedings of the London Mathematical Society]]|series=Series 2|volume=42|pages= 230–265 |year=1936–37|doi=10.1112/plms/s2-42.1.230 |s2cid=73712 }}. Corrections, ibid, vol. 43(1937) pp. 544–546. Reprinted in ''The Undecidable'', p. 116ff. Turing's famous paper completed as a Master's dissertation while at King's College Cambridge UK.
Line 274 ⟶ 285:
{{wikibooks|Algorithms}}
{{Wikiversity department}}
{{Commons category
* {{springer|title=Algorithm|id=p/a011780|mode=cs1}}
* {{MathWorld | urlname=Algorithm | title=Algorithm}}
|