Content deleted Content added
Clean up duplicate template arguments using findargdups |
Annawwanna (talk | contribs) Link suggestions feature: 3 links added. |
||
(17 intermediate revisions by 15 users not shown) | |||
Line 1:
{{Short description|Mathematical model used in hemodynamics}}
In small [[capillary]] [[hemodynamics]], the cell-free layer is a near-wall layer of [[Blood plasma|plasma]] absent of [[red blood cell]]s since they are subject to migration to the [[capillary]]
==Mathematical modeling==
===Governing equations===
Consider [[steady flow]] of [[blood]] through a [[capillary]] of [[radius]] <math>R</math>. The [[capillary]] cross section can be divided into a [[wikt:core|core]] region and cell-free [[Blood plasma|plasma]] region near the wall. The governing equations for both regions can be given by the following equations:<ref>{{cite book|last=Krishnan B. Chandran|first=Alit P. Yoganathan
:<math> \frac{ -\Delta P}{ L }=\frac{1}{r}\frac{d}{dr}(\mu_c r \frac{du_c}{dr});</math> <math> 0 \le r\ \le R-\delta\,</math>
Line 24 ⟶ 25:
*<math>\left. \frac{du_c}{dr}\right|_{r= 0}=0</math>
*<math>\left.u_p\right|_{r= R}=0</math>
*<math>\left.u_p\right|_{r= R-\delta}=\left.u_c\right|_{r= R-\delta}</math>
*<math>\left.\tau_p\right|_{r= R-\delta}=\left.\tau_c\right|_{r= R-\delta}</math>
Line 39 ⟶ 37:
:<math> u_p=\frac{ \Delta P R^2}{ 4\mu_p L }[1-(\frac{r}{R})^2]</math>
===Volumetric flow rate for cell-free and core regions===
<math>Q_p = \int\limits_{R-\delta}^{R} 2\pi*u_prdr = \frac{\pi \Delta P}{8\mu_p L}(R^2-(R-\delta)^2)^2</math>
<math>Q_c = \int\limits_{0}^{R-\delta} 2\pi*u_crdr=\frac{\pi\Delta P*(R-\delta)^2}{8L}[\frac{(R-\delta)^2}{\mu_c}+\frac{2(R^2-(R-\delta)^2)}{8\mu_p}]</math>
Total [[volumetric flow rate]] is the algebraic sum of the flow rates in core and plasma region. The expression for the total [[volumetric flow rate]] can be written as: ▼
▲Total [[volumetric flow rate]] is the algebraic sum of the flow rates in core and plasma region. The expression for the total [[volumetric flow rate]] can be written as:
:<math> Q=\frac{ \pi \Delta P R^4}{ 8\mu_p L }[1-(1-\frac{\delta}{R})^4(1-\frac{\mu_p}{\mu_c})]</math>▼
▲:<math> Q=Q_c+Q_p=\frac{ \pi \Delta P R^4}{ 8\mu_p L }[1-(1-\frac{\delta}{R})^4(1-\frac{\mu_p}{\mu_c})]</math>
Comparison with the [[viscosity]] which applies in the [[Poiseuille flow]] yields effective [[viscosity]], <math> \mu_{e} </math> as:
Line 49 ⟶ 50:
:<math> \mu_{e}=\frac{\mu_p}{[1-(1-\frac{\delta}{R})^4(1-\frac{\mu_p}{\mu_c})]} </math>
It can be realized when the radius of the [[blood vessel]] is
'''Relation between hematocrit and apparent/effective viscosity'''
[[Conservation of mass|Conservation of Mass]] Requires:
<math>QH_D=Q_cH_c</math>
<math>\frac{H_T}{H_C}=\sigma^2</math>
<math>H_T</math> = Average Red Blood Cell (RBC) volume fraction in small capillary
<math>H_D</math>= Average RBC volume fraction in the core layer
<math>\frac{H_T}{H_D}=\frac{Q}{Q_c}\sigma^2</math>, <math>\sigma = \frac{R-\delta}{R}</math>
<math>u_e = \frac{\pi\Delta PR^4}{8Q}</math>
<math>\frac{u_p}{u_e}=1+\sigma^4[\frac{u_a}{u_c}-1]</math>
Blood viscosity as a fraction of [[hematocrit]]:
<math>\frac{u_e}{u}=1-\alpha H</math>
==See also==
*[[Fåhræus–Lindqvist effect]]
*[[
*[[
==References==
{{Reflist}}
* {{cite journal | last1 = Chebbi | first1 = R | year = 2015 | title = Dynamics of blood flow: modeling of the Fahraeus-Lindqvist effect | journal = Journal of Biological Physics | volume = 41| issue = 3 | pages = 313–26| doi = 10.1007/s10867-015-9376-1 | pmid = 25702195 | pmc = 4456490 }}
[[Category:Fluid dynamics]]
|