Content deleted Content added
m Capitalising short description "functions used to evaluate optimization algorithms" per WP:SDFORMAT (via Bandersnatch) |
m Make the symbol consistent |
||
(44 intermediate revisions by 17 users not shown) | |||
Line 1:
{{Short description|Functions used to evaluate optimization algorithms}}
In applied mathematics, '''test functions''', known as '''artificial landscapes''', are useful to evaluate characteristics of optimization algorithms, such as
Here some test functions are presented with the aim of giving an idea about the different situations that optimization algorithms have to face when coping with these kinds of problems. In the first part, some objective functions for single-objective optimization cases are presented. In the second part, test functions with their respective [[Pareto front|Pareto fronts]] for [[multi-objective optimization]] problems (MOP) are given.▼
▲Here some test functions are presented with the aim of giving an idea about the different situations that optimization algorithms have to face when coping with these kinds of problems. In the first part, some objective functions for single-objective optimization cases are presented. In the second part, test functions with their respective Pareto fronts for [[multi-objective optimization]] problems (MOP) are given.
The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck,<ref>{{cite book|last=Bäck|first=Thomas|title=Evolutionary algorithms in theory and practice : evolution strategies, evolutionary programming, genetic algorithms|year=1995|publisher=Oxford University Press|___location=Oxford|isbn=978-0-19-509971-3|page=328}}</ref> Haupt et al.<ref>{{cite book|last=Haupt|first=Randy L. Haupt, Sue Ellen|title=Practical genetic algorithms with CD-Rom|year=2004|publisher=J. Wiley|___location=New York|isbn=978-0-471-45565-3|edition=2nd}}</ref> and from Rody Oldenhuis software.<ref>{{cite web|last=Oldenhuis|first=Rody|title=Many test functions for global optimizers|url=http://www.mathworks.com/matlabcentral/fileexchange/23147-many-testfunctions-for-global-optimizers|publisher=Mathworks|access-date=1 November 2012}}</ref> Given the number of problems (55 in total), just a few are presented here.
The test functions used to evaluate the algorithms for MOP were taken from Deb,<ref name="Deb:2002">Deb, Kalyanmoy (2002) Multiobjective optimization using evolutionary algorithms (Repr. ed.). Chichester [u.a.]: Wiley. {{isbn|0-471-87339-X}}.</ref> Binh et al.<ref name="Binh97">Binh T. and Korn U. (1997) [https://web.archive.org/web/20190801183649/https://pdfs.semanticscholar.org/cf68/41a6848ca2023342519b0e0e536b88bdea1d.pdf MOBES: A Multiobjective Evolution Strategy for Constrained Optimization Problems]. In: Proceedings of the Third International Conference on Genetic Algorithms. Czech Republic. pp. 176–182</ref> and Binh.<ref name="Binh99">Binh T. (1999) [https://www.researchgate.net/profile/Thanh_Binh_To/publication/2446107_A_Multiobjective_Evolutionary_Algorithm_The_Study_Cases/links/53eb422f0cf28f342f45251d.pdf A multiobjective evolutionary algorithm. The study cases.] Technical report. Institute for Automation and Communication. Barleben, Germany</ref>
Just a general form of the equation, a plot of the objective function, boundaries of the object variables and the coordinates of global minima are given herein.
Line 17 ⟶ 12:
==Test functions for single-objective optimization==
{| class="sortable wikitable"
! Name
|-▼
! Plot
! Formula
! Global minimum
! Search ___domain
|-
| [[Rastrigin function]]
<math>\text{where: } A=10</math>
|-
| [[Ackley function]]
<math>-\exp\left[0.5\left(\cos 2\pi x + \cos 2\pi y \right)\right] + e + 20</math>
|-
| Sphere function
|-
| [[Rosenbrock function]]
\begin{cases}
n=2 & \rightarrow \quad f(1,1) = 0, \\
Line 51 ⟶ 49:
\end{cases}
</math>
|-
| [[Beale function]]
<math>+ \left(2.625 - x+ xy^{3}\right)^{2}</math>
|-
| [[Goldstein–Price function]]
<math>\left[30+\left(2x-3y\right)^{2}\left(18-32x+12x^{2}+48y-36xy+27y^{2}\right)\right]</math>
|-
| [[Booth function]]
|-
| Bukin function N.6
|-
| [[Matyas function]]
|-
| Lévi function N.13
<math>+\left(y-1\right)^{2}\left(1+\sin^{2} 2\pi y\right)</math>
▲|-
| <math>f(\boldsymbol{x})= 1+ \frac {1}{4000} \sum _{i=1}^n x_i^2 -\prod _{i=1}^n P_i(x_i)</math>, where <math>P_i(x_i)=\cos \left( \frac {x_i}{\sqrt {i}} \right)</math>
|-
| [[Himmelblau's function]]
\begin{cases}
f\left(3.0, 2.0\right) & = 0.0 \\
Line 103 ⟶ 107:
\end{cases}
</math>
|-
| Three-hump camel function
|
|-
| [[Easom function]]
|-
| Cross-in-tray function
\begin{cases}
f\left(1.34941, -1.34941\right) & = -2.06261 \\
Line 128 ⟶ 132:
\end{cases}
</math>
|
|-
| [[Eggholder function]]<ref name="Whitley Rana Dzubera Mathias 1996 pp. 245–276">{{cite journal | last1=Whitley | first1=Darrell | last2=Rana | first2=Soraya | last3=Dzubera | first3=John | last4=Mathias | first4=Keith E. | title=Evaluating evolutionary algorithms | journal=Artificial Intelligence | publisher=Elsevier BV | volume=85 | issue=1–2 | year=1996 | issn=0004-3702 | doi=10.1016/0004-3702(95)00124-7 | pages=264| doi-access=free }}</ref><ref name="vanaret2015hybridation">Vanaret C. (2015) [https://www.researchgate.net/publication/337947149_Hybridization_of_interval_methods_and_evolutionary_algorithms_for_solving_difficult_optimization_problems Hybridization of interval methods and evolutionary algorithms for solving difficult optimization problems.] PhD thesis. Ecole Nationale de l'Aviation Civile. Institut National Polytechnique de Toulouse, France.</ref>
|-
| [[Hölder table function]]
\begin{cases}
f\left(8.05502, 9.66459\right) & = -19.2085 \\
Line 147 ⟶ 151:
\end{cases}
</math>
|-
| [[McCormick function]]
|-
| Schaffer function N. 2
|-
| Schaffer function N. 4
\begin{cases}
f\left(0,1.25313\right) & = 0.292579 \\
f\left(0,-1.25313\right) & = 0.292579 \\
f\left(1.25313,0\right) & = 0.292579 \\
f\left(-1.25313,0\right) & = 0.292579
\end{cases}
</math>
|-
| [[Styblinski–Tang function]]
|-▼
| [[Image:Shekel_2D.jpg|200px|A Shekel function in 2 dimensions and with 10 maxima]]
| <math>
f(\boldsymbol{x}) = \sum_{i = 1}^{m} \; \left( c_{i} + \sum\limits_{j = 1}^{n} (x_{j} - a_{ji})^2 \right)^{-1}
</math>
| <math>-\infty \le x_{i} \le \infty</math>, <math>1 \le i \le n</math>
|}
Line 184 ⟶ 198:
|-
! Name !! Plot !! Formula !! Global minimum !! Search ___domain
▲|-
|| <math>f(x,y) = (1-x)^2 + 100(y-x^2)^2</math>,▼
▲|| <math>f(1.0,1.0) = 0</math>
▲|| <math>-1.5\le x \le 1.5</math>, <math>-0.5\le y \le 2.5</math>
|-
| Rosenbrock function constrained to a disk<ref>{{Cite web|url=https://www.mathworks.com/help/optim/ug/example-nonlinear-constrained-minimization.html?requestedDomain=www.mathworks.com|title=Solve a Constrained Nonlinear Problem - MATLAB & Simulink|website=www.mathworks.com|access-date=2017-08-29}}</ref>
Line 217 ⟶ 223:
|-
| '''Keane's bump function'''{{anchor|Keane's bump function}}<ref>{{cite journal |last1=Mishra |first1=Sudhanshu |title=Minimization of Keane’s Bump Function by the Repulsive Particle Swarm and the Differential Evolution Methods |date=5 May 2007 |url=https://econpapers.repec.org/paper/pramprapa/3098.htm |journal=MPRA Paper|publisher=University Library of Munich, Germany}}</ref>
|| [[File:
|| <math>f(\boldsymbol{x
subjected to: <math> 0.75 -
|| <math>
▲|-
▲|| [[File:Simionescu contour.svg|200px|Simionescu function]]
|}
Line 258 ⟶ 256:
|| <math>0\le x \le 5</math>, <math>0\le y \le 3</math>
|-
| [[Chankong and Haimes function]]:<ref>{{cite book |last1=Chankong |first1=Vira |last2=Haimes |first2=Yacov Y. |title=Multiobjective decision making. Theory and methodology. |isbn=0-444-00710-5|year=1983 |publisher=North Holland }}</ref>
|| [[File:Chakong and Haimes function.pdf|200px|Chakong and Haimes function]]
|| <math>\text{Minimize} =
Line 360 ⟶ 358:
||<math>-\pi\le x,y \le \pi</math>
|-
| Zitzler–Deb–Thiele's function N. 1:<ref name="Debetal2002testpr">{{cite book |last1=Deb |first1=Kalyan |last2=Thiele |first2=L. |last3=Laumanns |first3=Marco |last4=Zitzler |first4=Eckart
|| [[File:Zitzler-Deb-Thiele's function 1.pdf|200px|Zitzler-Deb-Thiele's function N.1]]
|| <math>\text{Minimize} =
Line 446 ⟶ 444:
|| <math>0\le x_{1},x_{2},x_{6} \le 10</math>, <math>1\le x_{3},x_{5} \le 5</math>, <math>0\le x_{4} \le 6</math>.
|-
| CTP1 function (2 variables):<ref name="Deb:2002"/><ref name="Jimenezetal2002">{{cite
|| [[File:CTP1 function (2 variables).pdf|200px|CTP1 function (2 variables).<ref name="Deb:2002" />]]
|| <math>\text{Minimize} =
Line 490 ⟶ 488:
||<math>-3\le x,y \le 3</math>.
|}
▲* [[Ackley function]]
▲* [[Shekel function]]
==References==
<references/>▼
== External links ==
▲<references/>
* [https://github.com/nathanrooy/landscapes landscapes]
{{DEFAULTSORT:Test functions for optimization}}
[[Category:Constraint programming]]
[[Category:Convex optimization]]
[[Category:
[[Category:Test items]]
|